From 1 - 10 / 11
  • In 2017, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8, Sentinel-2, Gaofen-1) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by: provincial crop insurance companies in Alberta, Saskatchewan, Manitoba, & Quebec; point observations from the BC Ministry of Agriculture, & the Ontario Ministry of Agriculture, Food and Rural Affairs; and data collection supported by our regional AAFC Research and Development Centres in St. John’s, Kentville, Charlottetown, Fredericton, Guelph, and Summerland

  • Understanding the state and trends in agriculture production is essential to combat both short-term and long-term threats to stable and reliable access to food for all, and to ensure a profitable agricultural sector. Starting in 2009, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) began the process of generating annual crop type digital maps. Focusing on the Prairie Provinces in 2009 and 2010, a Decision Tree (DT) based methodology was applied using optical (Landsat-5, AWiFS, DMC) and radar (Radarsat-2) based satellite images. Beginning with the 2011 growing season, this activity has been extended to other provinces in support of a national crop inventory. To date this approach can consistently deliver a crop inventory that meets the overall target accuracy of at least 85% at a final spatial resolution of 30m (56m in 2009 and 2010).

  • In 2016, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8, Sentinel-2, Gaofen-1) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by: provincial crop insurance companies in Alberta, Saskatchewan, Manitoba, & Quebec; point observations from the BC Ministry of Agriculture, & the Ontario Ministry of Agriculture, Food and Rural Affairs; and data collection supported by our regional AAFC Research and Development Centres in St. John’s, Kentville, Charlottetown, Fredericton, Guelph, and Summerland.

  • This data product represents the biweekly volumetric soil moisture (percent saturated soil) for the surface layer, expressed as a difference from the long term average. The average is calculated from all available years for each location and each time period, based on the length of the satellite data record. Values higher than zero represent areas that are wetter than the long term average, and areas lower than zero represent areas drier than the long term average. The data is produced from passive microwave satellite data collected by the Soil Moisture and Ocean Salinity (SMOS) satellite and converted to soil moisture using version 6.20 of the SMOS soil moisture processor. The data are produced by the European Space Agency and obtained under a Category 1 proposal for Level 2 soil moisture data. The data are gridded to a resolution of 0.25 degrees. Data quality flags have been applied to remove areas where rainfall is present during the acquisition, where snow cover is detected and when Radio Frequency Interference (RFI) is above an acceptable threshold.

  • This data series represents the volumetric soil moisture (percent saturated soil) for the surface layer (<5 cm). The data is created daily and is averaged for the ISO standard week and month. The data is produced from passive microwave satellite data collected by the Soil Moisture and Ocean Salinity (SMOS) satellite and converted to soil moisture using version 6.20 of the SMOS soil moisture processor. The data are produced by the European Space Agency and obtained under a Category 1 proposal for Level 2 soil moisture data. The data are gridded to a resolution of 0.25 degrees. Data quality flags have been applied to remove areas where rainfall is present during the acquisition, where snow cover is detected and when Radio Frequency Interference (RFI) is above an acceptable threshold.

  • Snow and ice are important hydrological resources. Their minimum spatial extent here referred to as annual minimum snow/ice (MSI) cover, plays a very important role as an indicator of long-term changes and baseline capacity for surface water storage. The MSI probability is derived from sequence of seventeen 10-day clear-sky composites corresponding to April, 1 to September, 20 warm period for each year since 2000. Data from Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra satellite for the period since 2000 have been processed with the special technology developed at the Canada Centre for Remote Sensing (CCRS) as described in Trishchenko, 2016; Trishchenko et al., 2016; 2009, 2006, Khlopenkov and Trishchenko, 2008, Luo et al., 2008. The presence of snow or ice is determined for each pixel of the image based on snow/ice scene identification procedure and the probability if computed for the entire warm season as a ratio of number of snow/ice flags to the total number of pixels available (=< 17). The minimum snow and ice extent can be derived from the probability map by applying a certain threshold. References. Trishchenko, A.P., 2016: Probability maps of the annual minimum snow and ice (MSI) presence over April,1 to September, 20 period since 2000 derived from MODIS 250m imagery over Canada and neighbouring regions. Data format description. CCRS, NRCan. 4pp.

  • This data product represents the weekly, bi-weekly, and monthly volumetric soil moisture (percent saturated soil) for the surface layer (<5 cm). The data is produced from passive microwave satellite data collected by the Soil Moisture and Ocean Salinity (SMOS) satellite and converted to soil moisture using version 6.50 of the SMOS soil moisture processor. The data are produced by the European Space Agency. The data are gridded to a resolution of 0.25 degrees. Data quality flags have been applied to remove areas where rainfall is present during the acquisition, where snow cover is detected and when Radio Frequency Interference (RFI) is above an acceptable threshold.

  • In 2010 the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) continued the process of generating annual crop inventory digital maps using satellite imagery. Focusing on the Prairie Provinces, a Decision Tree (DT) based methodology was applied using both optical (AWiFS, Landsat-5, DMC) and radar (RADARSAT-2) based satellite imagery, and having a final spatial resolution of 56m. Methods were also developed to enhance the optical classification with RADARSAT-2 imagery, addressing issues associated with cloud cover. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from our regional AAFC colleagues. The overall process for Crop Inventory Map includes: satellite data acquisition; field data acquisition for classification training and accuracy assessment; and, operational implementation of the classification methodology.

  • In 2009 the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) began the process of generating annual crop inventory digital maps using satellite imagery. Focusing on the Prairie Provinces, a Decision Tree (DT) based methodology was applied using both optical (AWiFS, Landsat-5) and radar (RADARSAT-2) based satellite imagery, and having a final spatial resolution of 56m. Methods were also developed to enhance the optical classification with RADARSAT-2 imagery, addressing issues associated with cloud cover. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from our regional AAFC colleagues. The overall process for Crop Inventory Map includes: satellite data acquisition; field data acquisition for classification training and accuracy assessment; and, operational implementation of the classification methodology. The initial methodology was developed in partnership with AAFC Research Branch, and supported in part by the Canadian Space Agency. The long-term objective of this endeavour is to expand from the Prairies and produce an annual crop inventory of the entire agricultural extent of Canada.

  • In 2011, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) expanded the process of generating annual crop inventory digital maps using satellite imagery to include British Columbia, Ontario, Quebec, and the Maritime provinces, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-5, DMC) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from our regional AAFC colleagues.