Deliver Weather Products and Services to Clients
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
The Operational Hydrodynamic Prediction System (OHPS) is a 2D hydrodynamic prediction system for the St. Lawrence River and fluvial estuary. It helps to better understand flows impacting the St. Lawrence ecosystem and serves as a decision-making tool for the integrated management of the St-Lawrence. Three components are integrated in OHPS system. The first one "steadysol" conducts daily steady-state flow analyses, 4 times per day at 00Z, 06Z, 12Z and 18Z, respectively, over a simulation domain extending from Montreal to Trois-Rivières. The second and third components, i.e. "analysis" and "forecast", provide continuous analyses and 48-hrs forecasts, respectively, for unsteady flows over an extended St. Lawrence domain of which the upstream boundaries locate in Carillon and Beauharnois while the downstream tidal boundary is near Saint-Joseph-de-la-Rive, respectively, 4 times a day at 00Z, 06Z, 12Z and 18Z. The system provides high-resolution outcomes for various parameters such as water levels, depth-averaged velocities and derived attributes, over the simulated domains. The products are available in the NetCDF format, which provides datasets. The published datasets of "steadysol" is over an irregular triangulated mesh, while the datasets of "analysis" and "forecast" are over a Polar Stereographic grid.
-
Current conditions and forecasts for selected Canadian cities. Raw XML data are used to generate each city page on the Environment Canada web site https://www.weather.gc.ca/.
-
Climate observations are derived from two sources of data. The first are Daily Climate Stations producing one or two observations per day of temperature, precipitation. The second are hourly stations that typically produce more weather elements e.g. wind or snow on ground.
-
The Air Quality Health Index (AQHI) is a scale designed to help quantify the quality of the air in a certain region on a scale from 1 to 10. When the amount of air pollution is very high, the number is reported as 10+. It also includes a category that describes the health risk associated with the index reading (e.g. Low, Moderate, High, or Very High Health Risk). The AQHI is calculated based on the relative risks of a combination of common air pollutants that are known to harm human health, including ground-level ozone, particulate matter, and nitrogen dioxide. The AQHI formulation captures only the short term or acute health risk (exposure of hour or days at a maximum). The formulation of the AQHI may change over time to reflect new understanding associated with air pollution health effects. The AQHI is calculated from data observed in real time, without being verified (quality control).
-
A station is a site on a river or lake where water quantity (water level and flow) are collected and recorded.
-
Daily climate observations are derived from two sources of data. The first are Daily Climate Stations producing one or two observations per day of temperature, precipitation. The second are hourly stations that typically produce more weather elements e.g. wind or snow on ground. Only a subset of the total stations is shown due to size limitations. The criteria for station selection are listed as below. The priorities for inclusion are as follows: (1) Station is currently operational, (2) Stations with long periods of record, (3) Stations that are co-located with the categories above and supplement the period of record.
-
Climate Normals and Averages are used to summarize or describe the average climatic conditions of a particular location. At the completion of each decade, Environment and Climate Change Canada updates its Climate Normals for as many locations and as many climatic characteristics as possible. The Climate Normals, Averages and Extremes offered here are based on Canadian climate stations with at least 15 years of data between 1981 to 2010.
-
The Coastal Ice Ocean Prediction System (CIOPS) provides a 48 hour ocean and ice forecast over different domains (East, West, Salish Sea) four times a day at 1/36° resolution. A pseudo-analysis component is forced at the ocean boundaries by the Regional Ice Ocean Prediction System (RIOPS) forecasts and spectrally nudged to the RIOPS solution in the deep ocean. Fields from the pseudo-analysis are used to initialize the 00Z forecast, whilst the 06, 12 and 18Z forecasts use a restart files saved at hour 6 from the previous forecast. The atmospheric fluxes for both the pseudo-analysis and forecast components are provided by the High Resolution Deterministic Prediction System (HRDPS) blended both spatially and temporally with either the Global Deterministic Prediction System (GDPS) (for CIOPS-East) or an uncoupled component of the Global Deterministic Prediction System (GDPS) at 10km horizontal resolution (for CIOPS-West) for areas not covered by the HRDPS.
-
Hotspots represent active wildfires. Natural Resources Canada Canadian Wild Fire Information System identifies them by processing Infrared satellite images. This layer contains the hotspots that are selected to be used as input for the Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) to enable forecasting air quality while taking into account wildfire emissions. Geographical coverage is Canada and the United States. The products are presented as historical annual compilations which highlight long-term trends in cumulative effects on the environment.
-
The Canadian Lightning Detection Network (CLDN) provides lightning monitoring across most of Canada. The data distributed here represents a spatio-temporal aggregation of the observations of this network available with an accuracy of a few hundred meters. More precisely, every 10 minutes, the reported observations are processed in the following way: The location of observed lightning (cloud-to-ground and intra-cloud) in the last 10 minutes is extracted. Using a regular horizontal grid of about 2.5km by 2.5km, the number of observed lightning flashes within each grid cell is calculated. These grid data are normalized by the exact area of each cell (in km2) and by the accumulation period (10min) to obtain an observed flash density expressed in km-2 and min-1. A mask is applied to remove data located more than 250km from Canadian land or sea borders.