From 1 - 10 / 15
  • Categories  

    This dataset contains results from an eelgrass classification for Tracadie Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (https://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 101 sites. Approximately two-thirds of these sites were used to assist in image classification, while the remainder was used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 79.3% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 29 sites that were within the classification area, 18 were correct, 10 were "one-off", and 1 was incorrect [(18 + (10/2))/ 29 = 0.793].

  • Categories  

    This dataset contains results from an eelgrass classification for Bouctouche Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 688 sites. Two-thirds of these sites were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 83.7% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 187 sites that were within the classification area, 131 were correct, 51 were "one-off", and 5 were incorrect [(131 + (51/2))/ 187 = 0.837].

  • Categories  

    The rationale for developing this product was the recognized need for a standard and adaptable marine grid that could be used for planning or analysis purposes across projects. This nested grid has five spatial resolutions: 8km, 4km, 2km, 1km, and 500m. It covers the extent of the EEZ on the Canadian Pacific coast, and further east in order to encompass the Fraser River Delta and Puget Sound to account for ecological importance.

  • Categories  

    A Priority Place is an area of high biodiversity value that is seen as a distinct place with a common ecological theme by the people who live and work there. As part of the Pan-Canadian approach to transforming Species at Risk conservation in Canada, a total of 11 Priority Places were affirmed by federal, provincial, and territorial governments in December 2018. The places selected have significant biodiversity, concentrations of species at risk, and opportunities to advance conservation efforts. In each Priority Place, the federal and provincial or territorial governments are working with Indigenous Peoples, partners, and stakeholders to develop conservation implementation plans. This dataset displays the geographic area covered by each of the 11 Priority Places using the best available information from the Canadian Wildlife Service (CWS). Boundary information for each Priority Place was provided by its respective CWS regional office. The federal government, in collaboration with the provinces and territories, has agreed to the implementation of the Pan-Canadian Approach to Transforming Species at Risk Conservation in Canada. This new approach shifts from a single-species approach to conservation to one that focuses on multiple species and ecosystems. This enables conservation partners to work together to achieve better outcomes for species at risk. These 11 Priority Places are complemented by a suite of Community-Nominated Priority Places (CNPP), identified through an open call for applications.

  • Categories  

    It has long been understood that eelgrass (Zostera marina) is important to waterfowl such as Atlantic Brant (Branta bernicla hrota), Canada Goose (Branta canadensis), American Black Duck (Anas rubripes), Common Goldeneye (Bucephala clangula) and Barrow's Goldeneye (Bucephala islandica). In New Brunswick, eelgrass can be found along the Gulf of St. Lawrence, in protected harbours such as at Neguac Bay, in the province's northeast (47015’N, 65002’W).This dataset contains results from an eelgrass classification for Neguac Bay, New Brunswick. True colour aerial photography at 57 centimetre resolution was collected on September 2, 2009 by Nortek Resources of Thorburn, Nova Scotia (https://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 126 sites. Two-thirds of these sites were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified:Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 81% of the time in a fuzzy accuracy assessment technique, whereby those classes that were ‘off’ by one class, e.g. Good Quality eelgrass classed as Medium Quality, were given half credit towards the overall accuracy. Of 39 sites that were within the classification area, 27 were correct, 9 were "one-off", and 3 were incorrect [(27 + (9/2))/ 39 = 0.81].

  • Categories  

    As part of the Pan-Canadian approach to transforming Species at Risk conservation in Canada, a total of 11 Priority Places were affirmed by federal, provincial, and territorial governments in December 2018. The places selected have significant biodiversity, concentrations of species at risk, and opportunities to advance conservation efforts. In each Priority Place, the federal and provincial or territorial governments are working with Indigenous Peoples, partners, and stakeholders to develop conservation action implementation plans. Using a defined planning approach (such as the Open Standards for the Practice of Conservation), these implementation plans identify key actions to address the greatest threats to species. Conservation implementation plans provide the foundation for collaborative action on the ground. The federal government, in collaboration with the provinces and territories, has agreed to the implementation of the Pan-Canadian Approach to Transforming Species at Risk Conservation in Canada. This new approach shifts from a single-species approach to conservation to one that focuses on multiple species and ecosystems. This enables conservation partners to work together to achieve better outcomes for Species at Risk. These 11 Priority Places are complemented by a suite of Community-Nominated Priority Places (CNPP), identified through an open call for applications. To learn more about the Priority Places initiative and the work undertaken by our partners to recover Species at Risk within these Priority Places, please visit our interactive website https://environmental-maps.canada.ca/CWS_Storylines/index-ca-en.html#/en/priority_places-lieux_prioritaires

  • Categories  

    An eelgrass distribution map was classified from remotely sensed imagery in Richibucto Harbour, New Brunswick. Derived from a Quickbird satellite image collected on August 28th, 2007 at as close to low-tide as possible. Quickbird's ground resolution is 2.4 m. Classification was objected-oriented using Definiens software. Accuracy was 81.5%. Data used for accuracy and training was collected along transects using a differential GPS positioned towfish holding sidescan sonar, and a video camera that was later transcribed as XY points to describe eel-grass presence.

  • Categories  

    A Priority Place is an area of high biodiversity value that is seen as a distinct place with a common ecological theme by the people who live and work there. As part of the Pan-Canadian approach to transforming species at risk conservation in Canada, a total of 11 Priority Places were affirmed by federal, provincial, and territorial governments in December 2018. The places selected have significant biodiversity, concentrations of species at risk, and opportunities to advance conservation efforts. In each Priority Place, the federal and provincial or territorial governments are working with Indigenous Peoples, partners, and stakeholders to develop conservation implementation plans. This dataset captures a small sample of the projects that are underway in these Priority Places. Over time, it will be expanded to include more projects. Some projects span various areas of a Priority Place but are reflected in this dataset as a single center point. This dataset is not to be used for legal purposes.

  • Categories  

    The Canadian National Wetlands Inventory (CNWI) is a comprehensive publicly available national geodatabase developed by the Canadian Wildlife Services (CWS) of Environment and Climate Change Canada (ECCC), in collaboration with federal, provincial, territorial, academia, indigenous groups and Non-governmental organizations (NGOs). It consists of the best available wetland mapping and ground-truth data, along with its metadata, published in a standardized manner. Over time, not only existing data being complied but also new high-resolution data will be acquired to fill priority gaps in coverage, with an emphasis on peatlands and coastal wetlands. ECCC plans to use the CNWI to train and validate machine-learning algorithms to delineate and classify wetlands at a national scale and measure trends over time. This will support Canada’s Nature-Based Climate Solutions by informing biodiversity conservation, climate change mitigation and adaptation, and reporting on greenhouse gas (GHG) emission reduction. In 2022-2023, CWS selected 30 candidate datasets to include in the CNWI, out of over 50 datasets where an initial assessment was completed. As of December 2023, the CNWI includes 13 source datasets as depicted in Figure 1, gathered from seven provinces/territories (BC, NB, NS, PEI, ON, QC, YK), which comprise approximately 4.1 million wetland polygon features and covers approximately 40 million hectares. The source datasets are available by province/territory. These source datasets were cross-walked into a standardized CNWI Classification Schema, which was built on two foundational documents: the Canadian Wetland Classification System (National Wetlands Working Group, 1997) and Canadian Wetland Inventory (Data Model, 2016). The CNWI Schema contains five major wetland classes: Bog, Fen, Swamp, Marsh, Shallow / Open Water, and eight subclasses: Rich Fen, Poor Fen, Organic Swamp, Mineral Swamp, Organic Marsh, Mineral Marsh, Shallow Water, and Open Water. Non-conforming wetlands can be categorized into three groups: Peatland, Mixed, and Unclassified. For more information on the CNWI and related database, please refer to the CNWI User Manual and other supporting documents that accompanies this publication.

  • Categories  

    True colour aerial photography at 57 centimetre resolution was collected on August 20th and 24th, 2009 by Nortek Resources of Thorburn, Nova Scotia (http://www.nortekresources.com/). Image classification was conducted using eCognition Developer v. 8 Software, which first segments the image into spectrally similar units, which were then classified manually. Additionally, the Department of Fisheries and Oceans (Gulf Region, Moncton, NB) conducted a visual field survey in the same field season at 103 sites. From these sites 70% were used to assist in image classification, while the remainder were used to assess accuracy. Three classes were identified: i. Good Quality Eelgrass: relatively dense, clean, green blades with minimal epiphytes or algal growth. ii. Medium Quality Eelgrass: predominately green blades that may have some epiphyte or algal growth. These stands can be less or equally dense as Good Quality Eelgrass, but the best grasses are certainly not as abundant. iii. Eelgrass Absent/Poor Quality: eelgrass is absent, or if it is present it is typically covered with epiphytes or other algae or dying or dead. Eelgrass was classified correctly 96.7% of the time (30/31 = 0.967).