From 1 - 10 / 61
  • Categories  

    The Canadian Precipitation Analysis System (CaPA) produces a best estimate of 6 and 24 hour precipitation amounts. This objective estimate integrates data from in situ precipitation gauge measurements, radar QPEs and a trial field generated by a numerical weather prediction system. In order to produce the High Resolution Deterministic Precipitation Analysis (HRDPA) at a resolution of 2.5 km, CaPA is connected to the continental HRDPS for its trial field. CaPA-HRDPA produces four analyses of 6 hour amounts per day, valid at synoptic hours (00, 06, 12 and 18 UTC) and two 24 hour analysis valid at 06 and 12 UTC. A preliminary production is started 1 hour after valid time and a final one is launched 7 hours later. This translates into a production of 12 analyses per day.

  • Categories  

    The Global Ensemble Prediction System (GEPS) carries out physics calculations to arrive at probabilistic predictions of atmospheric elements from the current day out to 16 days into the future (up to 32 days once a week on Thursdays at 00UTC). The GEPS produces different outlooks (scenarios) to estimate the forecast uncertainties due to the nonlinear (chaotic) behaviour of the atmosphere. The probabilistic predictions are based on an ensemble of 20 scenarios that differ in their initial conditions, their physics parameters which are randomly perturbed by a Stochastic Parameter Perturbation (SPP) method, and the stochastic perturbations (kinetic energy). A control member that is not perturbed is also available. Weather elements include temperature, precipitation, cloud cover, wind speed and direction, humidity and others. This product contains raw numerical results of these calculations. Geographical coverage is global. The horizontal resolution of the system is 0.35 degree (about 39 km at equator). The system has 84 vertical levels for the forecasts and for the analyses. Predictions are performed twice a day.

  • Categories  

    Weather Elements on Grid (WEonG) based on the High Resolution Deterministic Prediction System (HRDPS) is a post-processing system designed to compute the weather elements required by different forecast programs (public, marine, aviation, air quality, etc.). This system amalgamates numerical and post-processed data using various diagnostic approaches. Hourly concepts are produced from different algorithms using outputs from the pan-Canadian High Resolution Deterministic Prediction System (HRDPS-NAT).

  • Categories  

    The Global Deterministic Prediction System (GDPS) is a coupled atmosphere (GEM), ocean and sea ice (NEMO-CICE) deterministic numerical weather prediction model. Forecasts are carried out twice a day for 10 days lead time. The geographical coverage is global on a native Yin-Yang grid at 15 km horizontal resolution. Data is available for 33 vertical levels and interpolated on a global latitude-longitude uniform grid with 0.2 degree horizontal resolution. Variables availability in number and time frequency is a function of forecast lead time.

  • Categories  

    The Regional Deterministic Wave Prediction System (RDWPS) produces wave forecasts out to 48 hours in the future using the third generation spectral wave forecast model WaveWatch III® (WW3). The model is forced by the 10 meters winds from the High Resolution Deterministic Prediction System (HRDPS). Over the Great Lakes, an ice forecast from the Water Cycle Prediction System of the Great Lakes (WCPS) is used by the model to attenuate or suppress wave growth in areas covered by 25% to 75% and more than 75% ice, respectively. Over the ocean, an ice forecast from the Regional Ice Ocean Prediction System (RIOPS) is used: in the Northeast Pacific, waves propagate freely for ice concentrations below 50%, above this threshold there is no propagation; in the Northwest Atlantic the same logic is used as in the Great Lakes. Forecast elements include significant wave height, peak period, partitioned parameters and others. This system includes several domains: Lake Superior, Lake Huron-Michigan, Lake Erie, Lake Ontario, Atlantic North-West and Pacific North-East.

  • Categories  

    Hotspots represent active wildfires. Natural Resources Canada Canadian Wild Fire Information System identifies them by processing Infrared satellite images. This layer contains the hotspots that are selected to be used as input for the Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) to enable forecasting air quality while taking into account wildfire emissions. Geographical coverage is Canada and the United States. The products are presented as historical annual compilations which highlight long-term trends in cumulative effects on the environment.

  • Categories  

    These products are derived from RGB (red/green/blue) images, a satellite processing technique that uses a combination of satellite sensor bands (also called channels) and applies a red/green/blue (RGB) filter to each of them. The result is a false-color image, i.e. an image that does not correspond to what the human eye would see, but offers high contrast between different cloud types and surface features. The on-board sensor of a weather satellite obtains two basic types of information: visible light data (reflected light) reflecting off clouds and different surface types, also known as "reflectance", and infrared data (emitted radiation) which are long-wave radiations emitted by clouds and surface features. RGBs are specially designed to combine this type of satellite data, resulting in an information-rich final product. Four types of products are currently generated from the GOES-West and GOES-East satellites: "NightIR" and "NightMicrophysics", at 2km resolution, are generated 24 hours a day with infrared channels, so are visible both night and day, and "NaturalColour" and "DayCloudConvection", at 1km resolution, which combine visible light channels with infrared channels; their higher resolution makes the latter two products more popular, but they are not available during most of the night (between 02UTC and 07UTC for GOES-Est, and between 06UTC and 11UTC for GOES-Ouest) given the absence of reflected sunlight. Other RGB products should be added gradually in the future to meet different needs.

  • Categories  

    Anomalous weather resulting in Temperature and Precipitation extremes occurs almost every day somewhere in Canada. For the purpose of identifying and tabulating daily extremes of record for temperature, precipitation and snowfall, the Meteorological Service of Canada has threaded or put together data from closely related stations to compile a long time series of data for about 750 locations in Canada to monitor for record-breaking weather. Virtual Climate stations correspond with the city pages of weather.gc.ca. This data provides the daily extremes of record for Temperature for each day of the year. Daily elements include: High Maximum, Low Maximum, High Minimum, Low Minimum.

  • Categories  

    These products are derived from RGB (red/green/blue) images, a satellite processing technique that uses a combination of satellite sensor bands (also called channels) and applies a red/green/blue (RGB) filter to each of them. The result is a false-color image, i.e. an image that does not correspond to what the human eye would see, but offers high contrast between different cloud types and surface features. The on-board sensor of a weather satellite obtains two basic types of information: visible light data (reflected light) reflecting off clouds and different surface types, also known as "reflectance", and infrared data (emitted radiation) which are short-wave and long-wave radiation emitted by clouds and surface features. RGBs are specially designed to combine this type of satellite data, resulting in an information-rich final product. Other products are based on the enhancement of channel data for a single wavelength, also aimed at highlighting meteorological features of the observed surface or clouds, but in a simpler way since only a single wavelength is involved. This older approach is still useful today, as its simplicity makes image interpretation easier in some cases.

  • Categories  

    WCPS-coupled forecast is the component in the Water Cycle Prediction System (WCPS) that provides the coupled atmosphere-ocean-sea ice forecasts at a 1km resolution (0.008 x 0.008 degree) over the Great Lakes, St. Lawrence River and the Gulf of St. Lawrence. It launches 4 times a day at 00, 06, 12, and 18 UTC and produces 84 hours forecast, based on the atmospheric model GEM, coupled with the ocean-ice model NEMO-CICE. The products from WCPS-coupled forecasts are (1) GEM : surface air temperatures, surface wind velocities, and surface runoff (2) NEMO-CICE : variety of lake/ocean sea ice variables, for example, lake levels and temperatures. They are designed to help forecasters issuing bulletins and warnings in ice-infestested waters for navigation, water level alert, emergency response, Search and Rescue, and CIS Sea Ice forecast.