From 1 - 10 / 48
  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    Historical earthquakes recorded by Earthquakes Canada. This serie is composed of 4 earthquake datasets. Each dataset contains the earthquakes grouped by decade; 1980-1989, 1990-1999, 2000-2009, 2010-2019. However, the National Earthquake Database makes available seismic bulletin data from 1985 and onward. For a complete listing of current and historical earthquakes, visit https://www.earthquakescanada.nrcan.gc.ca/.

  • Categories  

    Historical earthquakes recorded by Earthquakes Canada. This dataset contains the earthquakes recorded in decade 1990. However, the National Earthquake Database makes available seismic bulletin data from 1985 and onward. For a complete listing of current and historical earthquakes, visit https://www.earthquakescanada.nrcan.gc.ca/.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    Drought is a deficiency in precipitation over an extended period, usually a season or more, resulting in a water shortage that has adverse impacts on vegetation, animals and/or people. The Climate Moisture Index (CMI) was calculated as the difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of water vapour from a landscape covered by vegetation. Positive CMI values indicate wet or moist conditions and show that precipitation is sufficient to sustain a closed-canopy forest. Negative CMI values indicate dry conditions that, at best, can support discontinuous parkland-type forests. The CMI is well suited to evaluating moisture conditions in dry regions such as the Prairie Provinces and has been used for other ecological studies. Mean annual potential evapotranspiration (PET) was estimated for 30-year periods using the modified Penman-Monteith formulation of Hogg (1997), based on monthly 10-km gridded temperature data. Data shown on maps are 30-year averages. Historical values of CMI (1981-2010) were created by averaging annual CMI calculated from interpolated monthly temperature and precipitation data produced from climate station records. Future values of CMI were projected from downscaled monthly values of temperature and precipitation simulated using the Canadian Earth System Model version 2 (CanESM2) for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected mean annual Climate Moisture Index across Canada for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases). Reference: Hogg, E.H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology 84,115–122.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 2.6 (rapid emissions reductions). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the short-term (2011-2040) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    Many communities in Canada depend to some extent on forestry and the forest sector. The importance of the forest industry to the regional economy can be assessed using the CanEcumene GIS Database. “Ecumene” is a term used by geographers, meaning “inhabited lands.” A forest ecumene refers to areas where human settlement coincides with forested areas, including locations where people depend on the forest for their livelihood. Populated places in the ecumene database are referenced using natural boundaries, as opposed to administrative or census boundaries, and provide a more suitable means for integrating socio-economic data with ecological and environmental data in a region. An analysis of ecumene labour force data and location of mill facilities resulted in a generalized rendering showing regional dependency of the forest industry. The location of mill facilities layer includes information on mill type (i.e., pulp and saw) and ownership. The sensitivity to forest industry layer shows which forest communities and regions are more sensitive to economic impacts in the forest industry. Two layers are provided: the sensitivity of forest communities and regions to forest industry, and the location of mill facilities.