From 1 - 10 / 23
  • Categories  

    Nekton assemblages in Zostera marina beds and adjacent bare soft-sediments were sampled on the south and eastern shore of Nova Scotia. Sampling gear used were visual snorkel transects and a benthic beam trawl. Fish were identified and size either measured (trawl) or estimated in situ (snorkel transects). Surveys were conducted in mid-July to Aug in summer of 2013 and 2014 across multiple sampling sites. Multiple replicate transects were conducted at each site. Raw abundances from observations were transformed into young of year (YOY) equivalent abundance, and then into density of each species calibrated to account for the sampling equipment and day/night differences. Cite this data as: Wong, M. C. Data of: Fish and large decapods in eelgrass (Zostera marina) beds on the Atlantic coast of Nova Scotia, Canada. Published: April 2020. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/dbc56f11-4a97-45e7-99f4-71966b51630c

  • Categories  

    A novel towfish incorporating sidescan and video hardware was used to ground truth echosounder data for the nearshore of Halifax Harbour. The resulting sampling grid extended from the shoreline to a depth of 10 m, including Bedford Basin through the Inner Harbour to the Outer Harbour. Each of these three zones could be distinguished from the others based upon combinations of substrate type, benthic invertebrates, and macrophyte canopy. Bedford Basin had a relative lack of macrophytes and evidence of intense herbivory. The Inner Harbour was characterized by shoreline hardening due to anthropogenic activities. The Outer Harbour was the most “natural” nearshore area with a mix of bottom types and a relatively abundant and diverse macrophyte canopy. All survey data were placed into a GIS, which could be used to answer management questions such as the placement and character of habitat compensation projects in the harbour. Future surveys utilizing similar techniques could be used to determine long term changes in the nearshore of the harbour. Cite this data as: Vandermeulen H. Data of: A Video, Sidescan and Echosounder Survey of Nearshore Halifax Harbour. Published: September 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9122c3e2-3cfc-45d0-ac36-aecb306130f6

  • Categories  

    Towfish (sidescan and video) and echo sounder surveys were utilized to examine bottom type and macrophyte cover within the area of two coastal marine finfish aquaculture sites, one in New Brunswick (Welch Cove) and one in Nova Scotia (Jordan Bay). Both towfish and echo sounder data could be used independently of one another. However, the towfish data were very useful for ground truthing echo sounder based classifications. All survey data were placed into a GIS which could be used to answer management questions such as the placement of cages at sites, benthic impacts and baseline conditions to determine long term changes. Cite this data as: Vandermeulen H. Data of: Exploratory Video-Sidescan and Echosounder Survey of Jordan Bay. Published: March 2019. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/752d277f-8b3e-40c7-b99d-cfa67e69d975

  • Categories  

    The excessive input of nitrogen derived from human land-use activities remains a major cause of the eutrophication of coastal ecosystems around the world. However, little data exist on rates of nutrient pollution or its potential impacts to coastal ecosystems in Atlantic Canada. To fill this knowledge gap, a Nitrogen Loading Model (NLM) framework was applied to determine the Total Nitrogen Load (kg TN / yr) from point and non-point source inputs (wastewater, atmospheric deposition, land use, fertilizer applications, and regional industries) in 109 coastal watersheds bordering the Bay of Fundy and Scotian Shelf. To evaluate the potential impact of nitrogen loading, two indicators were calculated for 40 coastal embayments: (1) ∆N, a measure of nitrogen residency that predicts dissolved oxygen problems; and (2) the estuary loading rate, a predictor of the potential for loss of submerged aquatic vegetation. This project was funded by Fisheries and Oceans Canada through a Strategic Program for Ecosystem-based Research and Advice (SPERA) grant. This research has been published in the scientific literature (Kelly et al. 2021). Kelly, N.E., Guijarro-Sabaniel, J. and Zimmerman, R., 2021. Anthropogenic nitrogen loading and risk of eutrophication in the coastal zone of Atlantic Canada. Estuarine, Coastal and Shelf Science, 263, p.107630. doi: https://doi.org/10.1016/j.ecss.2021.107630 Cite this data as: Kelly, N.E., Guijarro-Sabaniel, J. and Zimmerman, R. Data of: Estimates of anthropogenic nitrogen loading and eutrophication indicators for the Bay of Fundy and Scotian Shelf. Published: February 2022. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/08746031-1970-4bf6-b6d4-3de2715c8634

  • Categories  

    The data layer (.shp) presented is the result of an unsupervised classification method for classifying seafloor habitat in the Bay of Fundy (Northwest Atlantic, Canada). This method involves separating environmental variables derived from multibeam bathymetry (slope, bathymetric position index), backscatter, and oceanographic information (wave-shear current velocity) into spatial units (i.e. image objects) and classifying the acoustically and oceanographically separated units into 7 habitat classes (Bedrock and Boulders, Mixed Sediments, Gravelly Sand, Sand, Silty Gravel with Anemones, Silt, and Tidal Scoured Mixed Sediments) using in-situ data (imagery). Benthoscape classes (synonymous to landscape classifications in terrestrial ecology) describe the geomorphology and biology of the seafloor and are derived from elements of the seafloor that were acoustically and oceanographically distinguishable. Reference: Wilson, B.R., Brown, C.J., Sameoto, J.A., Lacharite, M., Redden, A. (2021). Mapping seafloor habitats in the Bay of Fundy to assess macrofaunal assemblages associated with Modiolus modiolus beds. Estuarine, Coastal and Shelf Science, 252. https://doi.org/10.1016/j.ecss.2021.107294 Cite this data as: Wilson, B.R., Brown, C.J., Sameoto, J.A., Lacharite, M., Redden, A. Bay of Fundy Benthoscape. Published May 2023. Population Ecology Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/dbabd17a-a2c7-4b3f-9bd8-a77a9c7f9c1c

  • Categories  

    These data consist of the Recreational Shark Fishing Tournament landings database (1993-2022 inclusive) and the Canadian Dart tag database (2006 onwards; updated annually). Both were collected by the Maritimes Science Division of Fisheries and Oceans Canada. The landings records include biological sampling from 4266 animals and the dart tag records include 4138 tagging and 97 recapture events to date. Potential users should consult Bowlby et al. (2022) for the description, management history, and technical details pertaining to these data. Information is focused on Blue Sharks because they were the primary species captured at recreational tournaments. Cite this data as: Bowlby, H., Joyce, W. Recreational Shark Fishing Tournament Landings Data and Canadian Dart Tag Database. Published January 2023 . Population Ecology Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/4309f1f7-6779-416d-9660-c02f0f99b482

  • Categories  

    Data set covers metrics and metadata related to wild collected copepods Calanus spp. (C. hyperboreus, C. glacialis, C. finmarchicus) and Metridia longa: - body size in prosome length [PL] - dry weight [DW] - lipid content (oil sac area [OSA] and oil sac volume [OSV]) Spatial coverage: North Atlantic sampling sites - Scotian Shelf (SS) - Gulf of Saint Lawrence (GSL) - Gulf of Maine-Georges Bank-Nantucket Shoals (GoM) - Newfoundland shelf (NFL) Cite this data as: Helenius LK, Head EJH, Jekielek P, Orphanides CD, Pepin P, Plourde S, Ringuette M, Walsh HJ, Runge JA, Johnson CL. Calanus spp. size and lipid content metrics in North Atlantic, 1977-2019. Published September 2022. Ocean Ecosystem Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/72e6d3a1-06e7-4f41-acec-e0f1474b555b

  • Categories  

    In 2021, the Canada Coast Guard (CCG) and Fisheries and Oceans Canada (DFO) updated its administrative boundaries following the creation a new Arctic region.There are now 7 administrative regions in DFO (Pacific, Arctic, Ontario and Prairie, Quebec, Gulf, Maritimes, Newfoundland and Labrador). DFO and Coast Guard Arctic Regions developed these regions in partnership with the people they serve; this important decision will lead to stronger programs and services to better meet the unique needs of our Arctic communities.DFO and CCG operations and research cover Canada's land and waters to the international boundaries (EEZ) and are in no way limited to the boundaries drawn in the map.

  • Categories  

    Nearshore marine construction activities often involve projects conducted directly in or adjacent to eelgrass beds and can have detrimental effects on eelgrass health, through physical destruction of beds, smothering of plants by sediment, and light reduction from turbidity. A liquefied natural gas (LNG) marine terminal is proposed to be constructed near Goldboro in Isaacs Harbour on the Eastern shore of Nova Scotia in an area where sediments are contaminated with heavy metals from historical goldmining tailings. We conducted a pre-impact assessment of the eelgrass beds in Isaacs Harbour and in adjacent contaminated and non-contaminated harbours. We used underwater video to precisely map the eelgrass bed in the direct construction footprint in Isaacs Harbour. We surveyed 169 stations along ~40 km of coastline from Wine Harbour to New Harbour to identify eelgrass presence or absence in the nearby region and provide data on the distribution and abundance of other sensitive fish habitat such as kelp and other macrophytes. Sediment samples were collected and analyzed for grain size, organic matter content and heavy metal contamination. We also collected eelgrass plants to assess plant condition using morphological and physiological metrics, and heavy metal contamination in plant tissues. The overall condition of eelgrass plants in the surveyed area fell within the range of healthy plant characteristics (morphometrics and carbohydrates reserves) seen elsewhere along the Atlantic coast. However, a few stations displayed high arsenic and mercury contamination in sediments, which translated in some cases to high contamination in eelgrass rhizomes and leaves. There would be significant risk of impact on benthic habitat and contamination of marine biota from resuspension of sediments during a construction and operation of a ship terminal in Isaacs Harbour. This pre-impact assessment will allow DFO to assess the LNG terminal construction proposal and develop appropriate mitigation and monitoring procedures. Collected data will also be used for habitat-forming species distribution modeling to inform marine spatial and conservation planning. Vercaemer, B., O’Brien, J. M., Guijarro-Sabaniel, J. and Wong, M. C. 2022. Distribution and condition of eelgrass (Zostera marina) in the historical goldmining region of Goldboro, Nova Scotia. Can. Tech. Rep. Aquat. Sci. 3513: v + 67 p. Cite this data as: Vercaemer, B., O’Brien, J. M., Guijarro-Sabaniel, J., Wong, M. Data of: Eelgrass (Zostera marina) study in the historical goldmining region of Goldboro, Nova Scotia (2020). Published: February 2023. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/ee88aa17-fd30-4d4a-8924-897fd47cf560

  • Categories  

    Survey for Physella wright - the hotwater physa, at Liard River Hotsprings Provincial Park, August 2006. Description of activity: The research is a survey of the Hotwater physa, Physella wrighti, to estimate population distribution and abundance, in order to monitor the population of this freshwater snail found in a single hot spring site in Canada. Researchers will gather data regarding the density of snail populations and the characteristics of the habitat it utilizes in order to provide an updated assessment of its status. The proposed methodology allows accurate, monitoring of this population. Estimates of snail density per square meter will be calculated based on repeated sweeps of vegetation to dislodge snails. Where snails are found on open substrate, counts are done by quadrat. Attempts will be made to document egg case deposition. Population density estimates and ecosystem data will be sampled for every meter of stream where P. wrighti is known to occur. Each sample site will be georeferenced and documented using digital photography.