From 1 - 10 / 33
  • Categories  

    In 2021, the Canada Coast Guard (CCG) and Fisheries and Oceans Canada (DFO) updated its administrative boundaries following the creation a new Arctic region.There are now 7 administrative regions in DFO (Pacific, Arctic, Ontario and Prairie, Quebec, Gulf, Maritimes, Newfoundland and Labrador). DFO and Coast Guard Arctic Regions developed these regions in partnership with the people they serve; this important decision will lead to stronger programs and services to better meet the unique needs of our Arctic communities.DFO and CCG operations and research cover Canada's land and waters to the international boundaries (EEZ) and are in no way limited to the boundaries drawn in the map.

  • Categories  

    The Coastal Biodiversity Trawl Survey for the Passamaquoddy Bay was conducted annually between July to October from 2009 to 2019. This survey was intended to monitor long-term change in local species presence, habitat utilization, and health. The sampling activities support coastal research in fisheries, aquaculture, marine protected areas, and ecosystem change. Data collected prior to 2013 are generally not recommended for comparative analysis due to changes in vessel, sampling effort, and protocols.

  • Categories  

    Towfish (sidescan and video) and echo sounder surveys were utilized to examine bottom type and macrophyte cover within the area of two coastal marine finfish aquaculture sites, one in New Brunswick (Welch Cove) and one in Nova Scotia (Jordan Bay). Both towfish and echo sounder data could be used independently of one another. However, the towfish data were very useful for ground truthing echo sounder based classifications. All survey data were placed into a GIS which could be used to answer management questions such as the placement of cages at sites, benthic impacts and baseline conditions to determine long term changes. Cite this data as: Vandermeulen H. Data of: Exploratory Video-Sidescan and Echosounder Survey of Welch Cove. Published: June 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/0083e317-8bb5-492a-8348-c021e183f307

  • Categories  

    A novel, bay – scale (i.e. tens of km) survey method was employed to examine algal populations on the southwestern shore of Cape Breton, Canada, for the purposes of potential economic exploitation. Since traditional remote sensing methods were unlikely to be successful in these waters, underwater video and acoustic methods were applied. A transponder positioned towfish housing video camera and sidescan sonar was hauled along predetermined transects perpendicular to shore to provide information on bottom type and algal cover. The towfish data were used to ground truth echosounder data (bottom type and macrophyte canopy height) collected along 5, 10 and 20 m depth contours. The survey area was divided into six zones comprising a range of exposure, depth and bottom types. Destructive quadrat samples were collected at each depth plus shore stations to provide biomass estimates. Over thirty five taxa were enumerated, indicating depths and zones of common occurrence. Ascophyllum was abundant at some of the shore stations. The genera Chondrus, Cystoclonium, Desmarestia, Fucus, Phyllophora, Polysiphonia, and Saccharina were common at 5 m. Desmarestia and Saccharina dominated at 10 m with wet weights sometimes over 1 kg·m-2. Agarum dominated at 20 m. The towfish / echosounder grid sampling system was relatively coarse in order to cover the 140 km2 survey area within 12 days. As a result, the survey did not produce spatially detailed information. However, adequate information was gathered to describe the general characteristics of bottom type and algal cover by zone and for focusing further exploration--Abstract, p. vi. Cite this data as: Vandermeulen H. Data of: A Novel Video and Acoustic Survey of the Seaweeds of Isle Madame. Published: August 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/ebdd8f91-9131-45f0-8aec-aba9f65e3fae

  • Categories  

    In 2016-17, DFO Maritimes Region undertook a Marine Protected Area (MPA) network analysis for the Scotian Shelf-Bay of Fundy Bioregion. The analysis considered available bioregional-scale ecological and human use data in an effort to identify a draft MPA network design that would protect biodiversity while minimizing any potential impacts on commercial fishing and other industries. The data layers used for the offshore component of the MPA network analysis are provided here. These layers are not presented in their original forms and were modified (e.g. clipped, reclassified, etc.) specifically for use in the MPA network analysis. They should not be used for any other purpose. Please see Serdynska et al. 2021 for details on how each layer was created. Serdynska, A.R., Pardy, G.S., and King, M.C. 2021. Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion. Can. Tech. Rep. Fish. Aquat. Sci. 3382: xi + 100 p. https://publications.gc.ca/collections/collection_2021/mpo-dfo/Fs97-6-3382-eng.pdf Cite this data as: Serdynska, A.R., Pardy, G.S., and King, M.C. Data of: Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion. Published: January 2022. Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/2d9cce9a-d634-4b49-879f-87c40c52acf2

  • Categories  

    The excessive input of nitrogen derived from human land-use activities remains a major cause of the eutrophication of coastal ecosystems around the world. However, little data exist on rates of nutrient pollution or its potential impacts to coastal ecosystems in Atlantic Canada. To fill this knowledge gap, a Nitrogen Loading Model (NLM) framework was applied to determine the Total Nitrogen Load (kg TN / yr) from point and non-point source inputs (wastewater, atmospheric deposition, land use, fertilizer applications, and regional industries) in 109 coastal watersheds bordering the Bay of Fundy and Scotian Shelf. To evaluate the potential impact of nitrogen loading, two indicators were calculated for 40 coastal embayments: (1) ∆N, a measure of nitrogen residency that predicts dissolved oxygen problems; and (2) the estuary loading rate, a predictor of the potential for loss of submerged aquatic vegetation. This project was funded by Fisheries and Oceans Canada through a Strategic Program for Ecosystem-based Research and Advice (SPERA) grant. This research has been published in the scientific literature (Kelly et al. 2021). Kelly, N.E., Guijarro-Sabaniel, J. and Zimmerman, R., 2021. Anthropogenic nitrogen loading and risk of eutrophication in the coastal zone of Atlantic Canada. Estuarine, Coastal and Shelf Science, 263, p.107630. doi: https://doi.org/10.1016/j.ecss.2021.107630 Cite this data as: Kelly, N.E., Guijarro-Sabaniel, J. and Zimmerman, R. Data of: Estimates of anthropogenic nitrogen loading and eutrophication indicators for the Bay of Fundy and Scotian Shelf. Published: February 2022. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/08746031-1970-4bf6-b6d4-3de2715c8634

  • Categories  

    A novel towfish incorporating sidescan and video hardware was used to ground truth echosounder data for the nearshore of Halifax Harbour. The resulting sampling grid extended from the shoreline to a depth of 10 m, including Bedford Basin through the Inner Harbour to the Outer Harbour. Each of these three zones could be distinguished from the others based upon combinations of substrate type, benthic invertebrates, and macrophyte canopy. Bedford Basin had a relative lack of macrophytes and evidence of intense herbivory. The Inner Harbour was characterized by shoreline hardening due to anthropogenic activities. The Outer Harbour was the most “natural” nearshore area with a mix of bottom types and a relatively abundant and diverse macrophyte canopy. All survey data were placed into a GIS, which could be used to answer management questions such as the placement and character of habitat compensation projects in the harbour. Future surveys utilizing similar techniques could be used to determine long term changes in the nearshore of the harbour. Cite this data as: Vandermeulen H. Data of: A Video, Sidescan and Echosounder Survey of Nearshore Halifax Harbour. Published: September 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9122c3e2-3cfc-45d0-ac36-aecb306130f6

  • Categories  

    Three marine spatial planning areas are delineated in Eastern Canada to define the spatial extents of marine spatial plans being led by Fisheries and Oceans Canada (DFO): the Estuary and Gulf of St. Lawrence (EGSL), the Newfoundland and Labrador (NL) Shelves, and the Scotian Shelf and Bay of Fundy. The EGSL planning area includes the St. Lawrence River estuary from northeast of Île d’Orléans, Quebec, the Saguenay River estuary, and the entire Gulf of St. Lawrence as far north as the Strait of Belle Isle (NAFO Divisions 4RST). The NL Shelves planning area includes areas off southern, eastern and northern Newfoundland, part of the Churchill River and Lake Melville, as well as off the Labrador coast to the extent of the exclusive economic zone (EEZ) (NAFO Divisions 2GHJ and 3KLNOP). The Scotian Shelf and Bay of Fundy planning area includes DFO Maritimes’ administrative region off the Atlantic coast of Nova Scotia to the extent of the EEZ, the Bay of Fundy and the Canadian portion of the Gulf of Maine (NAFO Divisions 4VWX, 5Ze, and the Canadian portion of 5Y). The French EEZ for St. Pierre et Miquelon is excluded from the three planning areas. These planning areas are derived from Federal Marine Bioregions (https://open.canada.ca/data/en/dataset/23eb8b56-dac8-4efc-be7c-b8fa11ba62e9) that were developed by a Canadian Science Advisory Secretariat process using ecosystem-based management principles to define 13 ecological bioregions that have informed but not directed DFO implementation of marine spatial planning.

  • Categories  

    An annual trawl survey is conducted in Southwestern Nova Scotia and the Bay of Fundy to assess the lobster stocks in the area. The survey is conducted with the Northeast Fisheries Science Center Ecosystem Survey Trawl (NEST), a small mesh trawl with a cod end liner, which ensures the capture of various sizes of lobster. The dimensions and location of the trawl are monitored and recorded throughout the tow using an electronic trawl mensuration system. In addition, water temperature and depth are also monitored. The target tow length is 1 kilometer which is tracked using an Olex marine charting system. Vessel crew, DFO science staff and a contracted at sea observer work together to perform required tasks and collect all relevant data. Catch from each tow is separated by species, weighed and counted. Length frequency data is collected on select groundfish and crab species and detailed morphometric data is collected on each lobster. PARAMETERS COLLECTED: Set information and profile - includes set date, time depth and location Catch summary - weight and number caught of each species Length Freqeuncies - completed for up to 100 fish for selected species Lobster Morphological Data - detailed data collected on each lobster Bottom Temperature Trawl Metrics NOTES ON QUALITY CONTROL: Data is visually verified and double keypunched. On loading to Oracle, data is run through rigorous automated checks to verify data accuracy and integrity. SAMPLING METHODS: The target tow length is 1 kilometer which is tracked using an Olex marine charting system. Vessel crew, DFO science staff and a contracted at sea observer work together to perform required tasks and collect all relevant data. Catch from each tow is separated by species, weighed and counted. Length frequency data is collected on select groundfish and crab species, detailed morphometric data is collected on each lobster. Bottom temperature and trawl metrics are collected for each tow. CITATION LIST: Denton, Cheryl M.. 2020. Maritimes Region Inshore Lobster Trawl Survey Technical Description. Canadian technical reports of fisheries and aquatic sciences (DFO) 3376.

  • Categories  

    Fisheries and Oceans Canada’s (DFO) Coastal Environmental Baseline Program supports the collection of ecological information on the current state of key coastal ecosystems across Canada. This initiative aims to acquire environmental baseline data (physical, chemical and biological) contributing to the characterization of important coastal areas and to support evidence-based assessments and management decisions for preserving marine ecosystems. From this page, you will find links to the data from projects undertaken from 2018-2022 at six coastal sites across Canada.