• Arctic SDI catalogue
  •  
  •  
  •  

BC Tree Species Map/Likelihoods 2015

Dominant Species Map 2015

The data represent dominant tree species for British Columbia forests in 2015, are based upon Landsat data and modeling, with results mapped at 30 m spatial resolution. The map was generated with the Random Forests classifier that used predictor variables derived from Landsat time series including surface reflectance, land cover, forest disturbance, and forest structure, and ancillary variables describing the topography and position. Training and validation samples were derived from the Vegetation Resources Inventory (VRI), from a pool of polygons with homogeneous internal conditions and with low discrepancies with the remotely sensed predictions. Local models were applied over 100x100 km tiles that considered training samples from the 5x5 neighbouring tiles to avoid edge effects. An overall accuracy of 72% was found for the species which occupy 80% of the forested areas. Satellite data and modeling have demonstrated the capacity for up-to-date, wall-to-wall, forest attribute maps at sub-stand level for British Columbia, Canada.

BC Species Likelihood 2015

The tree species class membership likelihood distribution data included in this product focused on the province of British Columbia, based upon Landsat data and modeling, with results mapped at 30 m spatial resolution. The data represent tree species class membership likelihood in 2015. The map was generated with the Random Forests classifier that used predictor variables derived from Landsat time series including surface reflectance, land cover, forest disturbance, and forest structure, and ancillary variables describing the topography and position. Training and validation samples were derived from the Vegetation Resources Inventory (VRI) selecting from a stratified pool of polygons with homogeneous internal conditions and with low discrepancies when related to remotely sensed information. Local models were applied over 100x100 km tiles that, to avoid edge effects, considered training samples from the 5x5 neighbouring tiles. An overall accuracy of 72% was found for the species which occupy 80% of the forested areas. As an element of the mapping process, we also obtain the votes received for each class by the Random Forest models. The votes can be understood as analogous to class membership likelihoods, providing enriched information on land cover class uncertainty for use in modeling. Tree species class membership likelihoods lower than 5% have been masked and converted to zero.

When using this data, please cite as: Shang, C., Coops, N.C., Wulder, M.A., White, J.C., Hermosilla, T., 2020. Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. International Journal of Applied Earth Observation and Geoinformation 84, 101956. DOI: 10.1016/j.jag.2019.101956 ( Shang et al. 2020).

Simple

Date ( RI_367 )
2020
Date ( RI_366 )
2020
RI_415
  Government of Canada; Natural Resources Canada; Canadian Forest Service, Pacific Forestry Centre, Forest Geomatics - Dr. M.A.Wulder ( Research Scientist )
506 Burnside Road West , Victoria , British Columbia , V8R 2E4 , Canada
(250) 363-0600
(250) 363-6004
https://cfs.nrcan.gc.ca/employes/vue/mwulder
Hours of service
email only please
Status
onGoing; enContinue RI_596
Maintenance and update frequency
asNeeded; auBesoin RI_540
Government of Canada Core Subject Thesaurus Thésaurus des sujets de base du gouvernement du Canada ( Theme )
  • Forests
Use limitation
Open Government Licence - Canada (http://open.canada.ca/en/open-government-licence-canada)
Access constraints
otherRestrictions; autresRestrictions RI_609
Use constraints
intellectualPropertyRights; droitsPropriétéIntellectuelle RI_607
Other constraints
Les données représentant les espèces d’arbres dominantes des forêts de la Colombie-Britannique en 2015 sont fondées sur des données Landsat et leur modélisation, dont les résultats sont cartographiés à une résolution spatiale de 30 m. La carte a été produite par l’algorithme de classification des « forêts aléatoires » appliqué à des variables prédictives calculées à partir de séries chronologiques d’images Landsat, notamment la réflectance de la surface, la couverture terrestre, les perturbations forestières et la structure de la forêt, ainsi qu’à des variables accessoires décrivant la topographie et la position. Les échantillons d’entraînement et de validation ont été tirés de l’Inventaire des ressources végétales (Vegetation Resources Inventory), sélectionnés parmi un ensemble stratifié de polygones présentant des conditions internes homogènes et divergeant peu par rapport aux données de télédétection. Des modèles locaux ont été appliqués à des carrés de 100 km x 100 km et, pour éviter les effets de bordure, tenaient compte des échantillons d’entraînement pour les 5 x 5 carrés voisins. Pour les espèces d’arbres qui occupent 80 % de la superficie forestière, l’exactitude globale s’est chiffrée à 72 %. L’étude montre que les données satellitaires et leur modélisation peuvent servir à produire des cartes complètes et à jour des attributs forestiers à l’échelle des sous peuplements en Colombie Britannique (Canada).
Spatial representation type
grid; grille RI_636
Metadata language
eng
Topic category
  • Geoscientific information
Begin date
2015
End date
2015
N
S
E
W
thumbnail


Reference system identifier
http://www.epsg-registry.org / EPSG:3978 / 1.0
Distribution format
  • GeoTIF ( 1.0 )

RI_409
  Government of Canada; Natural Resources Canada; Canadian Forest Service, Pacific Forestry Centre, Forest Geomatics - Brian Low ( Manager, National Forest Information System )
506 Burnside Road West , Victoria , British Columbia , V8R 2E4 , Canada
(250) 363-0600
(250) 363-6004
https://ca.nfis.org/index_eng.html
Hours of service
email only please
OnLine resource
A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series ( HTTP )

Supporting Document;HTML;eng

OnLine resource
BC Tree Species ( OGC:WMS )

Web Service;WMS;fra

OnLine resource
BC Tree Species ( OGC:WMS )

Web Service;WMS;eng

OnLine resource
Update and spatial extension of strategic forest inventories using time series remote sensing and modeling ( HTTP )

Supporting Document;PDF;eng

OnLine resource
BC Tree Species Map/Likelihoods 2015 ( HTTPS )

Dataset;ZIP;eng

File identifier
8dddaa7f-c60d-4802-a662-2930c5aeedb8 XML
Metadata language
eng; CAN
Character set
utf8; utf8 RI_458
Hierarchy level
dataset; jeuDonnées RI_622
Date stamp
2020-12-02T21:45:09
Metadata standard name
North American Profile of ISO 19115:2003 - Geographic information - Metadata
Metadata standard version
CAN/CGSB-171.100-2009
RI_415
  Government of Canada; Natural Resources Canada; Canadian Forest Service, Pacific Forestry Centre, Forest Geomatics - Dr. M. A. Wulder ( Research Scientist )
506 West Burnside Road , Victoria , British Columbia , V8R 2E4 , Canada
(250) 363-0600
(250) 363-6004
https://cfs.nrcan.gc.ca/employes/vue/mwulder
Hours of service
email only please
 
 

Overviews

overview
thumbnail
overview
large_thumbnail
overview
thumbnail_fre
overview
large_thumbnail_fre

Spatial extent

N
S
E
W
thumbnail


Keywords

Government of Canada Core Subject Thesaurus
Forests

Provided by

logo

Associated resources

Not available


  •  
  •  
  •