From 1 - 10 / 100
  • Categories  

    Kluane Lake West Aeromagnetic Survey, Residual Total magnetic Field, NTS 115G/12 and parts of NTS 115G/11, 13, 14 and NTS 115F/9 and 16, Yukon

  • Categories  

    This map of the first vertical derivative of the magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity = 0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the total magnetic field.

  • Categories  

    New geochemical data from re-analysis of archived stream sediment samples have been assessed using weighted sums modeling and catchment basin analysis as described in the methodology report that accompanies this map (YGS Open File 2015-10). Both commodity and pathfinder element abundances are evaluated to highlight areas that show geochemical responses consistent with a variety of base and precious-metal mineral deposit types. The results of modeling, completed using two approaches, are presented as a series of catchment maps and associated data files. This release is part of a regional assessment of stream sediment geochemistry that covers a large part of Yukon.

  • Categories  

    This map of the residual total magnetic field was derived from data acquired during an aeromagnetic survey carried out by Goldak Airborne Surveys during the period May 16, 2009 to July 1, 2009. The data were recorded using a split-beam cesium vapour magnetometer mounted in the tail boom of a Piper Navajo aircraft. The nominal traverse and control line spacings were 400 m and 2400 m, respectively, and the aircraft flew at a nominal terrain clearance of 150 m.

  • Categories  

    This map of the first vertical derivative of the magnetic field was derived from data acquired during an aeromagnetic survey carried out by Goldak Airborne Surveys during the period of May 16 to July 1, 2009. The data were recorded using a split-beam cesium vapour magnetometer mounted in the tail boom of a Piper Navajo aircraft. The nominal traverse and control line spacings were 400 m and 2400 m, respectively, and the aircraft flew at a nominal terrain clearance of 150 m.

  • Categories  

    This map of the residual total magnetic field was derived from data acquired during an aeromagnetic survey carried out by Goldak Airborne Surveys during the period May 16, 2009 to July 1, 2009. The data were recorded using a split-beam cesium vapour magnetometer mounted in the tail boom of a Piper Navajo aircraft. The nominal traverse and control line spacings were 400 m and 2400 m, respectively, and the aircraft flew at a nominal terrain clearance of 150 m.

  • Categories  

    This map of the total magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. during the period between April 12, 2010 to June 2, 2010. The data were recorded using a split-beam cesium vapour magnetometer (sensitivity = 0.005 nT) mounted in the tail boom of a Piper Navajo aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N45?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the magnetic field.

  • Categories  

    This map of the residual total magnetic field was derived from data acquired during a helicopter-borne aeromagnetic survey carried out by Fugro Airborne Surveys during the period between February 4 to March 15, 2010. The data were recorded using split-beam cesium vapour magnetometers (sensitivity = 0.005 nT) rigidly mounted on each of the two Astar 350B aircraft (C-FGSC and C-GAVO). The nominal traverse and control line spacings were, respectively, 400 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 100 m. Traverse lines were oriented N30?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines.

  • Categories  

    This map of the total magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity =0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the magnetic field.

  • Categories  

    This map of the total magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity =0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the magnetic field.