RI_622
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 5 of the Atlas, Precambrian Basement Beneath the Western Canada Sedimentary Basin, Figure 12, Relation of the Precambrian lithostructural units. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 10 of the Atlas, Devonian Elk Point Group of the Western Canada Sedimentary Basin, Figure 6, Distribution of Lower Middle Devonian, Headless Equivalents. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 12 of the Atlas, Devonian Woodbend-Winterburn Strata of the Western Canada Sedimentary Basin, Figure 3, Woodbend Isopach. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 10 of the Atlas, Devonian Elk Point Group of the Western Canada Sedimentary Basin, Figure 6, Distribution of Lower Middle Devonian, Headless Equivalents. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 12 of the Atlas, Devonian Woodbend-Winterburn Strata of the Western Canada Sedimentary Basin, Figure 22c, Upper Leduc Lithofacies/Paleogeography. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 31 of the Atlas, Petroleum Generation and Migration in the Western Canada Sedimentary Basin, Figure 19, Lower Jurassic Petroleum System. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
This digital dataset is the compilation of an analysis of the in situ stress regime in several regions of Alberta and northeastern British Columbia conducted by Dr. Sebastian Bell under a contract with the Alberta Geological Survey from 1999 to 2004. The dataset includes both new and previously published estimates for vertical stress gradients, minimum horizontal stress gradients, and stress orientation. Understanding the state of stress in the subsurface has always been important in the development of energy resources. The recent development of unconventional oil sand and low permeability hydrocarbon deposits, waste fluid disposal, greenhouse gas sequestration, and potential geothermal energy extraction all require knowledge of the state of stress to operate safely and economically. A lack of understanding of the state of stress in a given project area has the potential to negatively affect the economics of such projects and may expose operators to increased liabilities. Regional-scale studies of the stress regime indicate that in southern and central Alberta the vertical stress (Sv) is the largest principal stress. The Sv magnitude is determined from the overburdened load and is calculated by integrating the bulk density log from ground surface to the depth of interest. This dataset contains 724 vertical stress gradient measurements from 126 wells in Alberta. The minimum horizontal stress (Shmin) can be evaluated using a variety of tests. While leak-off tests and fracture breakdown pressures have been used in the past for estimating the magnitude of the Shmin, mini-fracture tests (also known as DFITS) are currently considered a more accurate and consistent method. This dataset includes only mini-fracture test data, consisting of 106 minimum horizontal stress gradient measurements in 83 wells. Alberta was one of the first regions in the world where stress mapping began, originating in the pioneering 'borehole breakout' developments of Dr. Bell from the Geological Survey of Canada in Calgary and Dr. Gough from the University of Alberta. The Shmin orientations can be determined from borehole breakouts, which are spalled cavities that occur on opposite walls of a borehole. This dataset contains 214 stress orientation measurements from 133 wells.
-
This GIS dataset represents a reclassification of existing surficial map information for the purpose of portraying the distribution of sand and gravel deposits in Alberta. The surficial geology of Alberta ungeneralised digital mosaic (Alberta Geological Survey DIG2013-0001) represents the primary source of information used in this reclassification. This dataset was updated with more recently published 1:100,000 scale surficial geology maps, and where appropriate new polygon features that were digitized from line features in the Glacial Landforms of Alberta (Alberta Geological Survey Map 604 and DIG2014-0022). The updated surficial geology mosaic was then reclassified using a thematically-based attribute table which categorizes the original surficial geology features based on their sand and gravel component. Attributes within this table comprise: (1) an approximation of the material type (MATERIAL). (2) the aerial proportion that this material represents of the polygon, as a percentage (PROPORTION). (3) an indication of whether the sand and gravel unit is mapped at the land surface or is buried (SRF_BURIED). (4) the depositional environment relating to the sand and gravel unit (GENESIS). (5) the reference source to the original data (SOURCE_MAP). (6) the GIS dataset from which the features were derived (DATASET). and (7) the mapping scale (SCALE). The MATERIAL honours the original surficial geology polygons when sufficiently precise texture/material information was provided. Otherwise MATERIAL is based on the typical range of materials that are associated with each surficial geology unit on a litho-genetic basis, using the standard Alberta Geological Survey surficial geology legend. When multiple surficial geological units that contain sand and gravel are present within a single polygon (i.e. 60% eolian deposits and 40% fluvial deposits), MATERIAL reflects the unit with the greatest proportion. For geological units whose material properties are of marginal significance as a sand and gravel deposit, particularly those that contain a mixture of silt and sand, a hierarchy was used to determine whether they are included as sand and gravel deposits. Fluvial deposits, littoral and nearshore deposits, and eolian deposits with a silt textural modifier in the original mapping data were included as potential sand and/or gravel deposits because these units are often interspersed with sand and/or gravel materials. Glaciolacustrine deposits with a silt textural modifier were not included because this environment generally does not result in the deposition of extensive sand and gravel sediments. After all of the attributes had been updated, all polygons that may contain some component of sand or gravel were extracted from this dataset to create the sand and gravel potential for Alberta digital mosaic. With this dataset, users can view the extent of surficial sand and gravel deposits in the province in a single GIS layer without the need to interpret this information from a variety of legends in the original surficial geology datasets. Users can further highlight polygons that may represent more suitable targets for sand and gravel based on the estimated material type (i.e. by eliminating polygons that typically contain large amounts of silt and fine sand), the estimated proportion of sand and gravel within the polygon, and depositional environment. This dataset best portrays sand and gravel potential that occurs at the land surface or in the very near surface, and does not attempt evaluate the sub-surface distribution of sand and gravel units. This dataset also does not provide any direct assessment of aggregate quality or thickness, and the material information is mostly inferred from the general association between certain surficial material types and their geological, depositional environment. Furthermore, the sand and gravel potential dataset is based on surficial geology maps produced at different scales and using different legends, therefore the detail and amount of information provided by these polygons will exhibit regional variations. The mapping scale for each polygon is provided in the SCALE attribute.
-
The Geological Atlas of the Western Canada Sedimentary Basin was designed primarily as a reference volume documenting the subsurface geology of the Western Canada Sedimentary Basin. This GIS dataset is one of a collection of shapefiles representing part of Chapter 16 of the Atlas, Triassic Strata of the Western Canada Sedimentary Basin, Figure 24, Montney Isopach and Lithofacies. Shapefiles were produced from archived digital files created by the Alberta Geological Survey in the mid-1990s, and edited in 2005-06 to correct, attribute and consolidate the data into single files by feature type and by figure.
-
This dataset is a GIS version of part of Map 227, which is a regional synthesis of various published and unpublished maps. The data represent drift isopachs for Alberta. The southern part of Alberta, from 49 to 56 degrees north, was primarily compiled from existing 1:250,000 bedrock topography maps. The interpretation of the remaining northern portion of the province was based mostly on limited borehole data and information from existing 1:250,000 hydrogeological maps. The exposed areas represent areas where drift is absent or thin and discontinuous. Contour intervals are irregular and depend on local data density.