HTML
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
Residual total magnetic field, Aeromagnetic Survey of the Scroggie Creek and Wolverine Creek Areas, NTS 115O/8 and part of 115O/7
-
This high sensitivity aeromagnetic survey was carried out by Goldak Airborne Surveys (Goldak) on behalf of the Geological Survey of Canada (GSC) between January 25th and March 26th, 2011. Aircraft equipment operated included three cesium vapour magnetometers, a GPS real-time and post-corrected differential positioning system, a flight path recovery camera, VHS titling and recording system, as well as radar and barometric altimeters. All data were recorded digitally in GEDAS binary file format. Reference ground equipment included two GEM Systems GSM-19W Overhauser magnetometers and a Novatel 12 channel GPS base station which was set up at the base of operations for differential post-flight corrections. Eighty two flights (including test and calibration sorties) were required to complete the survey block. A total of 37,999 line kilometres of high resolution magnetic data were collected, processed and plotted. The traverse lines were flown at a spacing of 400 metres with control lines flown at a separation of 2400 metres. Nominal terrain clearance was specified at 100 metres above ground.
-
This map of the first vertical derivative of the magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity = 0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the total magnetic field.
-
This map of the first vertical derivative of the magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. in the period between April 10, 2009 and September 16, 2009. The data were recorded using split-beam cesium vapour magnetometers (sensitivity = 0.005 nT) mounted in each of the tail booms of a Piper Navajo and a Cessna 206 aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N90?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the total magnetic field.
-
Map of Canada's forested areas used in the Story Map of Forest Management in Canada, 2017. Canada's forest management classification map classifies all land and inland water areas. It does not differentiate forest areas from non-forest areas. Treed areas can be identified using a separate map layer that was derived using satellite data. Treed areas were used as a proxy for forested areas having a canopy closure of 25% or greater and a tree height of 5 m or greater. Source: This web map shows Canada's forested areas used in the Story Map of Forest Management in Canada, 2017 and includes the following tiled layer: Canada's Forested or Treed Areas, 2017Data provided by Alberta Agriculture and Forestry; British Columbia Ministry of Forests; Manitoba Sustainable Development; Natural Resources Canada; New Brunswick Department of Energy and Resource Development; Newfoundland & Labrador Department of Fisheries and Land Resources; Northwest Territories Department of Environment and Natural Resources; Nova Scotia Department of Lands and Forestry; Ontario Ministry of Natural Resources and Forestry; Prince Edward Island Department of Communities, Land & Environment; Québec Ministère des Forêts, de la Faune et des Parcs; Saskatchewan Ministry of Environment; and Yukon Energy, Mines and Resources.
-
Get data on forest fires, compiled annually for the National Forestry Database [The National Forestry Database](http://nfdp.ccfm.org/en/index.php) includes national forest data and forest management statistics to seve as a credible, accurate and reliable source of information on forest management and its impact on the forest resource. Forest fire data is grouped into eight categories, which are further broken down by geographic location. These include: * number of fires by cause class and response category * area burned by cause class and response category * number of fires by month and response category * area burned by month and response category * number of fires by fire size class and response category * area burned by fire size class and response category * area burned by productivity class, stocking class, maturity class and response category * other fire statistics, such as property losses
-
This map of the total magnetic field was derived from data acquired during an aeromagnetic survey carried out by EON Geosciences Inc. during the period between April 12, 2010 to June 2, 2010. The data were recorded using a split-beam cesium vapour magnetometer (sensitivity = 0.005 nT) mounted in the tail boom of a Piper Navajo aircraft. The nominal traverse and control line spacings were, respectively, 800 m and 2 400 m, and the aircraft flew at a nominal terrain clearance of 250 m. Traverse lines were oriented N45?E with orthogonal control lines. The flight path was recovered following post-flight differential corrections to the raw Global Positioning System data and inspection of ground images recorded by a vertically-mounted video camera. The survey was flown on a pre-determined flight surface to minimize differences in magnetic values at the intersections of control and traverse lines. These differences were computer-analysed to obtain a mutually levelled set of flight-line magnetic data. The levelled values were then interpolated to a 200 m grid. The International Geomagnetic Reference Field (IGRF) was not removed from the magnetic field.
-
This high sensitivity aeromagnetic survey was carried out by Goldak Airborne Surveys (Goldak) on behalf of the Geological Survey of Canada (GSC) between January 25th and March 26th, 2011. Aircraft equipment operated included three cesium vapour magnetometers, a GPS real-time and post-corrected differential positioning system, a flight path recovery camera, VHS titling and recording system, as well as radar and barometric altimeters. All data were recorded digitally in GEDAS binary file format. Reference ground equipment included two GEM Systems GSM-19W Overhauser magnetometers and a Novatel 12 channel GPS base station which was set up at the base of operations for differential post-flight corrections. Eighty two flights (including test and calibration sorties) were required to complete the survey block. A total of 37,999 line kilometres of high resolution magnetic data were collected, processed and plotted. The traverse lines were flown at a spacing of 400 metres with control lines flown at a separation of 2400 metres. Nominal terrain clearance was specified at 100 metres above ground.
-
First vertical derivative of the magnetic field, Aeromagnetic Survey of the Scroggie Creek and Wolverine Creek Areas, NTS 115O/2 and part of 115O/3
-
This high sensitivity aeromagnetic survey was carried out by Goldak Airborne Surveys (Goldak) on behalf of the Geological Survey of Canada (GSC) between January 25th and March 26th, 2011. Aircraft equipment operated included three cesium vapour magnetometers, a GPS real-time and post-corrected differential positioning system, a flight path recovery camera, VHS titling and recording system, as well as radar and barometric altimeters. All data were recorded digitally in GEDAS binary file format. Reference ground equipment included two GEM Systems GSM-19W Overhauser magnetometers and a Novatel 12 channel GPS base station which was set up at the base of operations for differential post-flight corrections. Eighty two flights (including test and calibration sorties) were required to complete the survey block. A total of 37,999 line kilometres of high resolution magnetic data were collected, processed and plotted. The traverse lines were flown at a spacing of 400 metres with control lines flown at a separation of 2400 metres. Nominal terrain clearance was specified at 100 metres above ground.