From 1 - 1 / 1
  • Categories  

    Description: Biophysical Units: Under the Pacific Marine Ecological Classification System (PMECS; DFO 2016; Rubidge et al. 2016), biophysical units are areas of distinct physiographic and oceanographic conditions and processes that shape species composition at spatial extents of 1000s of km. Geomorphic units: Geomorphic units or geozones are discrete geomorphological structures at the scale of 100s of km that are assumed to have distinctive biological assemblages (e.g., plateaus, ridges, seamounts, canyons). Although the spatial scale of geomorphic units is nested within biophysical units, a single geomorphic unit such as a trough may span more than one biophysical unit. The following 5 layers are included in this geodatabase: 1. Biophysical_Units_L4A - Predicted PMECS Biophysical Units (Level 4A) output from the random forest analysis 2. Biophysical_Units_L4B - Predicted PMECS Biophysical Units (Level 4B) output from the random forest analysis 3. Biophysical_Units_ProbAssign_L4AB - Layer showing the probability that a grid cell was assigned to a given biophysical unit in the final random forest predictive modelling step 4. Cluster_L4AB - Layer showing the output of species assemblage cluster analysis 5. Geomorphic_Units - Geomorphic units for the BC coast that combines geomorphic units produced by Rubidge et al. 2016) and Proudfoot and Robb (2022). Methods: Biophysical Units: Rubidge et al. (2016) used a two-step process to identify biophysical units in British Columbia. First, a cluster analysis based on the similarity of species composition was used to group sites with similar species into distinct biological assemblages. Second, a random forest analysis was used to identify environmental correlates of the biological assemblages identified by the cluster analysis and to predict and assign the biological assemblage present in areas with too few biological data. Two different similarity thresholds were used to identify two levels (4A, 4B) of biophysical units; see Rubidge et al. (2016) for details. Indicator species for each assemblage (biophysical unit) were also identified. Geomorphic units: Rubidge et al. (2016) used the benthic terrain modeller (BTM) tool with broad and fine-scale benthic positioning index (BPI) parameters to define geomorphic units on the continental shelf in the Northern Shelf Bioregion and the continental slope in both the Northern Shelf Bioregion and Southern Shelf Bioregion. In 2022, geomorphic units were produced for the Strait of Georgia and Southern Shelf Bioregions following the same methods as Rubidge et al. (2016) (Proudfoot and Robb 2022). The geomorphic units produced as part of the PMECS process were merged with the geomorphic units produced for the Strait of Georgia and Southern Shelf bioregions to produce a continuous spatial data product representing geomorphic units for the Canadian Pacific continental shelf and slope. After merging, the geomorphic units produced in 2016 were unchanged (i.e., they are consistent with the original geomorphic units described in Rubidge et al. 2016). Data Sources: From Rubidge et al. (2016): Species data was taken from Fisheries and Oceans Canada (DFO) standardized fisheries-independent research surveys: groundfish trawl and long-line (2003-2013), Tanner Crab trawl and trap (2000–2006), and Dungeness Crab trap (2000–2014). Environmental data came from NASA, the Canadian Hydrographic Service, Fisheries and Oceans Canada, Bio-ORACLE, and elsewhere (details in Rubidge et al. 2016). From Proudfoot and Robb (2022): bathymetry data came from Natural Resources Canada (details in Proudfoot and Robb 2022). Uncertainties: The data is intended for use at the bioregional scale, and caution should be used for finer-scale analyses.