Topic
 

oceans

1075 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1075
  • Categories  

    Phytoplankton counts (cell/L)) at the 3 fixed stations and some of the 46 stations grouped into Atlantic Zone Monitoring Program (AZMP) transects under Quebec region responsibility. Phytoplankton data counts at AZMP stations in June 2014, 2018 and 2019 are displayed as 5 layers: Diatoms, Dinoflagellates, Flagellates, Protozoans and Total Phytoplankton. Another layer displays the fixed stations Rimouski, Anticosti Gyre and Gaspe Current and the attached files contain the phytoplankton data acquired at those stations: a .png file for each one, showing time series of counts for the 5 groups, and a .csv file containing the data themselves (columns : Latitude,Longitude, Date(UTC), Depth_min/Profondeur_min(m), Depth_max/Profondeur_max(m), Diatoms/Diatomées(cells/L), Dinoflagellates/Dinoflagellés(cells/L), Flagellates/Flagellés(cells/L), Protozoans/Protozoaires(cells/L), Phytoplankton/Phytoplancton(cells/L)). Purpose The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment. The AZMP collects data from a network of stations composed of high-frequency monitoring sites and cross-shelf sections in each following DFO region: Québec, Gulf, Maritimes and Newfoundland. The sampling design provides basic information on the natural variability in physical, chemical, and biological properties of the Northwest Atlantic continental shelf. Cross-shelf sections sampling provides detailed geographic information but is limited in a seasonal coverage while critically placed high-frequency monitoring sites complement the geography-based sampling by providing more detailed information on temporal changes in ecosystem properties. In Quebec region, two surveys (46 stations grouped into transects) are conducted every year, one in June and the other in autumn in the Estuary and Gulf of St. Lawrence. Historically, 3 fixed stations were sampled more frequently. One of these is the Rimouski station that still takes part of the program and is sampled about weekly throughout the summer and occasionally in the winter period. Annual reports (physical, biological and a Zonal Scientific Advice) are available from the Canadian Science Advisory Secretariat (CSAS), (http://www.dfo-mpo.gc.ca/csas-sccs/index-eng.htm). Devine, L., Scarratt, M., Plourde, S., Galbraith, P.S., Michaud, S., and Lehoux, C. 2017. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/034. v + 48 pp. Supplemental Information Phytoplankton samples are collected using Niskin bottles, preserved with acid Lugol solution and analysed according to AZMP sampling protocol: Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain, P. 2002. Atlantic Zonal Monitoring Program sampling protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223: iv + 23 pp.

  • Categories  

    A towfish containing sidescan and video hardware was used to map eelgrass in two shallow northern New Brunswick estuaries. The sidescan and video data were useful in documenting suspected impacts of oyster aquaculture gear and eutrophication on eelgrass. With one boat and a crew of three, the mapping was accomplished at a rate of almost 10 km2 per day. That rate far exceeds what could be accomplished by a SCUBA based survey with the same crew. Moreover, the towfish survey applied with a complementary echosounder survey is potentially a more cost effective mapping method than satellite based remote sensing. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video - Richibucto 2007. Published: October 2017. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/ca7af8ba-8810-4de5-aa91-473613b0b38d

  • Categories  

    Benthic macro-infauna biomass in the northern Bering and Chukchi Seas from 1970 to 2012, displayed as decadal pattern Adapted from Grebmeier et al. (2015a) with permission from Elsevier. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/findings/benthos" target="_blank">Chapter 3</a> - Page 98 - Figure 3.3.6 Cumulative scores of benthos drivers for each of the 8 CAFF-AMAs. The cumulative scores are taken from the last column of Table 3.3.1. The flower chart/plot helps to visualize the data.

  • Categories  

    Time series of dissolved inorganic nutrients (nitrate, silicate, phosphate) (mmol/m2) at the 3 fixed stations and 46 stations, grouped into transects, of the Atlantic Zonal Monitoring Program (AZMP) under the Quebec region responsibility. The mean integrated nutrient data of 2 strata (0-50 m) et (50-150 m) from the last ten years are displayed as 12 layers, 6 for the June survey (2013-2022, 2020 not sampled) and 6 for the autumn survey (2013-2022). Finally, 2 other layers shows the positions of the fixed stations of the program (Anticosti Gyre, Gaspé Current and Rimouski). Each station is linked with a .png file showing the time series of nutrients and with a .csv file containing all the integrated nutrient data acquired at those stations since the beginning of the program sampling (columns : Station, Latitude, Longitude, Date(UTC), Sounding(m), Depth_min/Profondeur_min(m), Depth_max/Profondeur_max(m), Integrated_Nitrate/Nitrate_intégré(mmol/m²), Integrated_Phosphate/Phosphate_intégré(mmol/m²), Integrated_Silicate/Silice_intégrée(mmol/m²)). Purpose The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment. The AZMP collects data from a network of stations composed of high-frequency monitoring sites and cross-shelf sections in each following DFO region: Québec, Gulf, Maritimes and Newfoundland. The sampling design provides basic information on the natural variability in physical, chemical, and biological properties of the Northwest Atlantic continental shelf. Cross-shelf sections sampling provides detailed geographic information but is limited in a seasonal coverage while critically placed high-frequency monitoring sites complement the geography-based sampling by providing more detailed information on temporal changes in ecosystem properties. In Quebec region, two surveys (46 stations grouped into transects) are conducted every year, one in June and the other in autumn in the Estuary and Gulf of St. Lawrence. Historically, 3 fixed stations were sampled more frequently. One of these is the Rimouski station that still takes part of the program and is sampled about weekly throughout the summer and occasionally in the winter period. Annual reports (physical, biological and a Zonal Scientific Advice) are available from the Canadian Science Advisory Secretariat (CSAS), (http://www.dfo-mpo.gc.ca/csas-sccs/index-eng.htm). Devine, L., Scarratt, M., Plourde, S., Galbraith, P.S., Michaud, S., and Lehoux, C. 2017. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/034. v + 48 pp. Supplemental Information Water sampling for nutrients analysis is done from Niskin bottles according to AZMP sampling protocol: Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain, P. 2002. Atlantic Zonal Monitoring Program sampling protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223: iv + 23 pp.

  • Categories  

    This dataset contains the modelled and observed data used in the publication "Fjord circulation permits persistent subsurface water mass in a long, deep mid-latitude inlet" by Laura Bianucci et al., DFO Ocean Sciences Division, Pacific Region (published in the journal Ocean Science in 2024). An application of the Finite Volume Community Ocean Model (FVCOM v4.1) was run from May 24 to June 27, 2019 in the Discovery Islands region of British Columbia, Canada. Observed temperature and salinity profiles available in this area during this time period are included in the dataset, along with the modelled values at the same times and locations.

  • Categories  

    The Brier Island/Digby Neck area has been identified as an Ecologically and Biologically Significant Area (EBSA) by Fisheries and Oceans Canada and is one of four marine areas within the Bay of Fundy recognised by Parks Canada as of national significance for marine conservation planning. The area is representative of important outer Bay of Fundy features with significant marine mammal, bird, and benthic diversity including potentially important aggregations of sensitive benthic species such as horse mussel and sponge. Much of the information used for this recognition is now over 40 years old and should be re-validated using standardised georeferenced survey methods. As a first phase, a diver-based survey of the sublittoral habitats and associated species was conducted in August and September of 2017 for the Brier Island area. This report summarises the major sublittoral habitat types, species assemblages, and oceanographic conditions observed at 20 locations including Northwest and Southwest Ledges, Gull Rock, Peter’s Island, and Grand Passage. A total of 962 records were made of 178 taxa, consisting of 43 algae and 135 animals. Comparison with historical records largely confirmed the continued presence of unique habitats and species assemblages for which this area was initially recognised as an EBSA. Differences in species richness observed for cryptic and less known taxonomic groups such as sponges and bryozoans were attributable to changes in survey methods and knowledge. Based on these findings, additional surveys of inshore and offshore Brier Island using more quantitative methods developed for other Bay of Fundy EBSAs would further support regional MPA network planning and provide relative scales of species diversity and habitat coverage for this area.

  • Categories  

    The assessment of the status of eelgrass (Zostera marina) beds at the bay-scale in turbid, shallow estuaries is problematic. The bay-scale assessment (i.e., tens of km) of eelgrass beds usually involves remote sensing methods such as aerial photography or satellite imagery. These methods can fail if the water column is turbid, as is the case for many shallow estuaries on Canada’s eastern seaboard. A novel towfish package was developed for the bay-scale assessment of eelgrass beds irrespective of water column turbidity. The towfish consisted of an underwater video camera with scaling lasers, sidescan sonar and a transponder-based positioning system. The towfish was deployed along predetermined transects in three northern New Brunswick estuaries. Maps were created of eelgrass cover and health (epiphyte load) and ancillary bottom features such as benthic algal growth, bacterial mats (Beggiatoa) and oysters. All three estuaries had accumulations of material reminiscent of the oomycete Leptomitus, although it was not positively identified in our study. Tabusintac held the most extensive eelgrass beds of the best health. Cocagne had the lowest scores for eelgrass health, while Bouctouche was slightly better. The towfish method proved to be cost effective and useful for the bay-scale assessment of eelgrass beds to sub-meter precision in real time. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Using Sidescan and Video - Cocagne 2008. Published: November 2019. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/431c815e-65f0-477b-9389-060fa41ec955

  • Categories  

    This product displays for Hexachlorobenzene, positions with values counts that have been measured per matrix for each year and are present in EMODnet regional contaminants aggregated datasets, v2022. The product displays positions for every available year.

  • Categories  

    Daily sea surface temperature and salinity observations have been carried out at several locations on the coast of British Columbia since the early part of the 20th century. Observations started at the Pacific Biological Station (Departure Bay) in 1914; 11 stations were added in the mid-1930s and several more in the 1960s. The number of stations reporting at any given time has varied as sampling has been discontinued at some stations and started or resumed at others. Presently termed the British Columbia Shore Station Oceanographic Program (BCSOP), there are 12 active participating stations. Most of the stations are at lighthouses staffed by Fisheries and Oceans Canada, but three (Race Rocks, Amphitrite Point, and Active Pass) are sampled by contracted observers. Observations are made daily using seawater collected in a bucket lowered into the surface water at or near the daytime high tide. This sampling method was designed long ago by Dr. John P. Tully and has not been changed in the interests of a homogeneous data set. This means, for example, that if an observer starts sampling one day at 6 a.m., and continues to sample at the daytime high tide on the second day the sample will be taken at about 06:50 the next day, 07:40 the day after etc. When the daytime high-tide gets close to 6 p.m. the observer will then begin again to sample early in the morning, and the cycle continues. Since there is a day/night variation in the sea surface temperatures the daily time series will show a signal that varies with the14-day tidal cycle. This artifact does not affect the monthly sea surface temperature data.

  • Categories  

    Locations are indicated based on the information available. If coordinates were not available, the approximate location is indicated using the description associated with the record. Note that effort is not accounted for in this dataset, nor is effort equally distributed throughout the area captured. Data derived from satellite or acoustic tagging are not included in this dataset. Note that not all records are confirmed. DFO Science reviews records and reports and classifies them as either confirmed or unconfirmed, based on the available information (e.g., pictures, videos, descriptions).