oceans
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Arctic Marine Areas (AMAs) as defined in the CBMP Marine Plan. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/marine" target="_blank">Chapter 1</a> - Page 15 - Figure 1.2
-
Significant Benthic Areas are defined in DFO's Ecological Risk Assessment Framework (ERAF) as "significant areas of cold-water corals and sponge dominated communities", where significance is determined "through guidance provided by DFO-lead processes based on current knowledge of such species, communities and ecosystems". Here we provide maps of the location of significant concentrations of corals and sponges on the east coast of Canada produced through quantitative analyses of research vessel trawl survey data, supplemented with other data sources where available. We have conducted those analyses following a bio-regionalization approach in order to facilitate modelling of similar species, given that many of the multispecies surveys do not record coral and sponge catch at species level resolution. The taxa analyzed are sponges (Porifera), large and small gorgonian corals (Alcyonacea), and sea pens (Pennatulacea). We applied kernel density estimation (KDE) to create a modelled biomass surface for each of those taxa, and applied an aerial expansion method to identify significant concentrations, following an approach first applied in 2010 to this region. We compared our results to those obtained previously. KDE uses only geo-referenced biomass data to identify "hot spots". The borders of the areas so identified can be refined using knowledge of null catches and species distribution models that predict species presence-absence and/or biomass, both incorporating environmental data.
-
Description: Data on recreational boating are needed for marine spatial planning initiatives in British Columbia (BC). Vessel traffic data are typically obtained by analyzing automatic identification system (AIS) vessel tracking data, but recreational vessels are often omitted or underrepresented in AIS data because they are not required to carry AIS tracking devices. Transport Canada’s National Aerial Surveillance Program (NASP) conducted aerial surveys to collect information on recreational vessels along several sections of the BC coast between 2018 and 2022. Recreational vessel sightings were modeled against predictor variables (e.g., distance to shore, water depth, distance to, and density of marinas) to predict the number of recreational vessels along coastal waters of BC. The files included here are: --A Geodatabase (‘Recreational_Boating_Data_Model’), which includes: (1) recreational vessel sightings data collected by NASP in BC and used in the recreational vessel traffic model (‘Recreational_Vessels_PointData_BC’); (2) aerial survey effort (or number of aerial surveys) raster dataset (‘surveyeffort’); and (3) a vector grid dataset (2.5 km resolution) containing the predicted number of recreational vessels per cell and predictor variables (‘Recreational_Boating_Model_Results_BC). --Scripts folder which includes R Markdown file with R code to run the modelling analysis (‘Recreational_Boating_Model_R_Script’) and data used to run the code. Methods: Data on recreational vessels were collected by NASP during planned aerial surveys along pre-determined routes along the BC coast from 2018 to 2022. Data on non-AIS recreational vessels were collected using video cameras onboard the aircraft, and data on AIS recreational vessels using an AIS receiver also onboard the aircraft. Recreational boating predictors explored were: water depth, distance to shore, distance to marinas, density of marinas, latitude, and longitude. Recreational vessel traffic models were fitted using Generalized Linear Models (GLM) R packages and libraries used here include: AED (Roman Lustrik, 2021) and MASS (Venables, W. N., Ripley, 2002), pscl package (Zeileis, Kleiber, and Jackman, 2008) for zeroinfl() and hurdle() function. Final model was selected based on the Akaike’s information criterion (AIC) and the Bayes’ information criterion (BIC). An R Markdown file with code use to run this analysis is included in the data package in a folder called Script. Spatial Predictive Model: The selected model, ZINB, consist of two parts: one with a binomial process that predicts the probability of encountering a recreational vessel, and a second part that predicts the number of recreational vessels via a count model. The closer to shore and to marinas, and the higher the density of marinas, the higher the predicted number of recreational vessels. The probability of encountering recreational vessels is driven by water depth and distance to shore. For more information on methodology, consult metadata pdf available with the Open Data record. References: Serra-Sogas, N. et al. 2021. Using aerial surveys to fill gaps in AIS vessel traffic data to inform threat assessments, vessel management and planning. Marine Policy 133: 104765. https://doi.org/10.1016/j.marpol.2021.104765 Data Sources: Recreational vessel sightings and survey effort: Data collected by NASP and analyzed by Norma Serra to extract vessel information and survey effort (more information on how this data was analyzed see SerraSogas et al, 2021). Bathymetry data for the whole BC coast and only waters within the Canadian EEZ was provided by DFO – Science (Selina Agbayani). The data layer was presented as a raster file of 100 meters resolution. Coastline dataset used to estimate distance to shore and to clip grid was provided by DFO – Science (Selina Agbayani), created by David Williams and Yuriko Hashimoto (DFO – Oceans). Marinas dataset was provided by DFO – Science (Selina Agbayani), created by Josie Iacarella (DFO – Science). This dataset includes large and medium size marinas and fishing lodges. The data can be downloaded from here: Floating Structures in the Pacific Northwest - Open Government Portal (https://open.canada.ca/data/en/dataset/049770ef-6cb3-44ee-afc8-5d77d6200a12) Uncertainties: Model results are based on recreational vessels sighted by NASP and their related predictor variables and not always might reflect real-world vessel distributions. Any biases caused by the opportunistic nature of the NASP surveys were minimized by using survey effort as an offset variable.
-
This is a point layer of the names and locations of the actively used commercial shipping anchorages in British Columbia. These point locations were manually compiled from available port guides and documents. The objective of this dataset is to provide a consolidated file containing all active commercial shipping anchorage locations as there has been a lack of consistency between different sources due to variations in names and locations in different datasets and historical changes to anchorage locations.
-
Time series of dissolved inorganic nutrients (nitrate, silicate, phosphate) (mmol/m2) at the 3 fixed stations and 46 stations, grouped into transects, of the Atlantic Zonal Monitoring Program (AZMP) under the Quebec region responsibility. The mean integrated nutrient data of 2 strata (0-50 m) et (50-150 m) from the last ten years are displayed as 12 layers, 6 for the June survey (2013-2022, 2020 not sampled) and 6 for the autumn survey (2013-2022). Finally, 2 other layers shows the positions of the fixed stations of the program (Anticosti Gyre, Gaspé Current and Rimouski). Each station is linked with a .png file showing the time series of nutrients and with a .csv file containing all the integrated nutrient data acquired at those stations since the beginning of the program sampling (columns : Station, Latitude, Longitude, Date(UTC), Sounding(m), Depth_min/Profondeur_min(m), Depth_max/Profondeur_max(m), Integrated_Nitrate/Nitrate_intégré(mmol/m²), Integrated_Phosphate/Phosphate_intégré(mmol/m²), Integrated_Silicate/Silice_intégrée(mmol/m²)). Purpose The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment. The AZMP collects data from a network of stations composed of high-frequency monitoring sites and cross-shelf sections in each following DFO region: Québec, Gulf, Maritimes and Newfoundland. The sampling design provides basic information on the natural variability in physical, chemical, and biological properties of the Northwest Atlantic continental shelf. Cross-shelf sections sampling provides detailed geographic information but is limited in a seasonal coverage while critically placed high-frequency monitoring sites complement the geography-based sampling by providing more detailed information on temporal changes in ecosystem properties. In Quebec region, two surveys (46 stations grouped into transects) are conducted every year, one in June and the other in autumn in the Estuary and Gulf of St. Lawrence. Historically, 3 fixed stations were sampled more frequently. One of these is the Rimouski station that still takes part of the program and is sampled about weekly throughout the summer and occasionally in the winter period. Annual reports (physical, biological and a Zonal Scientific Advice) are available from the Canadian Science Advisory Secretariat (CSAS), (http://www.dfo-mpo.gc.ca/csas-sccs/index-eng.htm). Devine, L., Scarratt, M., Plourde, S., Galbraith, P.S., Michaud, S., and Lehoux, C. 2017. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/034. v + 48 pp. Supplemental Information Water sampling for nutrients analysis is done from Niskin bottles according to AZMP sampling protocol: Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain, P. 2002. Atlantic Zonal Monitoring Program sampling protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223: iv + 23 pp.
-
A novel towfish incorporating sidescan and video hardware was used to ground truth echosounder data for the nearshore of Halifax Harbour. The resulting sampling grid extended from the shoreline to a depth of 10 m, including Bedford Basin through the Inner Harbour to the Outer Harbour. Each of these three zones could be distinguished from the others based upon combinations of substrate type, benthic invertebrates, and macrophyte canopy. Bedford Basin had a relative lack of macrophytes and evidence of intense herbivory. The Inner Harbour was characterized by shoreline hardening due to anthropogenic activities. The Outer Harbour was the most “natural” nearshore area with a mix of bottom types and a relatively abundant and diverse macrophyte canopy. All survey data were placed into a GIS, which could be used to answer management questions such as the placement and character of habitat compensation projects in the harbour. Future surveys utilizing similar techniques could be used to determine long term changes in the nearshore of the harbour. Cite this data as: Vandermeulen H. Data of: A Video, Sidescan and Echosounder Survey of Nearshore Halifax Harbour. Published: September 2021. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9122c3e2-3cfc-45d0-ac36-aecb306130f6
-
In 2012 and 2013, Fisheries and Oceans Canada conducted benthic imagery surveys in the Davis Strait and Baffin Basin in two areas then closed to bottom fishing, the Hatton Basin Voluntary Closure (now the Hatton Basin Conservation Area) and the Narwhal Closure (now partially in the Disko Fan Conservation Area). The photo transects were established as long-term biodiversity monitoring sites to monitor the impact of human activity, including climate change, on the region’s benthic marine biota in accordance with the protocols of the Circumpolar Biodiversity Monitoring Program established by the Council of Arctic Flora and Fauna. These images were analyzed in a techncial report that summarises the epibenthic megafauna found in seven image transects from the Disko Fan Conservation Area. A total of 480 taxa were found, 280 of which were identified as belonging to one of the following phyla: Annelida, Arthropoda, Brachiopoda, Bryozoa, Chordata, Cnidaria, Echinodermata, Mollusca, Nemertea, and Porifera. The remaining 200 taxa could not be assigned to a phylum and were categorised as Unidentified. Each taxon was identified to the lowest possible taxonomic level, typically class, order, or family. The summaries for each of the taxa include their identification numbers in the World Register of Marine Species and Integrated Taxonomic Information System’s databases, taxonomic hierarchies, images, and written descriptions. The report is intended to provide baseline documentation of the epibenthic megafauna in the Disko Fan Conservation Area, and serve as a taxonomic resource for future image analyses in the Arctic. Baker, E., Beazley, L., McMillan, A., Rowsell, J. and Kenchington, E. 2018. Epibenthic Megafauna of the Disko Fan Conservation Area in the Davis Strait (Eastern Arctic) Identified from In Situ Benthic Image Transects. Can. Tech. Rep. Fish. Aquat. Sci. 3272: vi + 388 p.
-
This dataset provides 1/36-degree monthly-mean ocean current climatology (April - September) in the Northeast Pacific. The climatological fields are derived from hourly ocean currents for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM).
-
The Brier Island/Digby Neck area has been identified as an Ecologically and Biologically Significant Area (EBSA) by Fisheries and Oceans Canada and is one of four marine areas within the Bay of Fundy recognised by Parks Canada as of national significance for marine conservation planning. The area is representative of important outer Bay of Fundy features with significant marine mammal, bird, and benthic diversity including potentially important aggregations of sensitive benthic species such as horse mussel and sponge. Much of the information used for this recognition is now over 40 years old and should be re-validated using standardised georeferenced survey methods. As a first phase, a diver-based survey of the sublittoral habitats and associated species was conducted in August and September of 2017 for the Brier Island area. This report summarises the major sublittoral habitat types, species assemblages, and oceanographic conditions observed at 20 locations including Northwest and Southwest Ledges, Gull Rock, Peter’s Island, and Grand Passage. A total of 962 records were made of 178 taxa, consisting of 43 algae and 135 animals. Comparison with historical records largely confirmed the continued presence of unique habitats and species assemblages for which this area was initially recognised as an EBSA. Differences in species richness observed for cryptic and less known taxonomic groups such as sponges and bryozoans were attributable to changes in survey methods and knowledge. Based on these findings, additional surveys of inshore and offshore Brier Island using more quantitative methods developed for other Bay of Fundy EBSAs would further support regional MPA network planning and provide relative scales of species diversity and habitat coverage for this area.
-
Phytoplankton counts (cell/L)) at the 3 fixed stations and some of the 46 stations grouped into Atlantic Zone Monitoring Program (AZMP) transects under Quebec region responsibility. Phytoplankton data counts at AZMP stations in June 2014, 2018 and 2019 are displayed as 5 layers: Diatoms, Dinoflagellates, Flagellates, Protozoans and Total Phytoplankton. Another layer displays the fixed stations Rimouski, Anticosti Gyre and Gaspe Current and the attached files contain the phytoplankton data acquired at those stations: a .png file for each one, showing time series of counts for the 5 groups, and a .csv file containing the data themselves (columns : Latitude,Longitude, Date(UTC), Depth_min/Profondeur_min(m), Depth_max/Profondeur_max(m), Diatoms/Diatomées(cells/L), Dinoflagellates/Dinoflagellés(cells/L), Flagellates/Flagellés(cells/L), Protozoans/Protozoaires(cells/L), Phytoplankton/Phytoplancton(cells/L)). Purpose The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment. The AZMP collects data from a network of stations composed of high-frequency monitoring sites and cross-shelf sections in each following DFO region: Québec, Gulf, Maritimes and Newfoundland. The sampling design provides basic information on the natural variability in physical, chemical, and biological properties of the Northwest Atlantic continental shelf. Cross-shelf sections sampling provides detailed geographic information but is limited in a seasonal coverage while critically placed high-frequency monitoring sites complement the geography-based sampling by providing more detailed information on temporal changes in ecosystem properties. In Quebec region, two surveys (46 stations grouped into transects) are conducted every year, one in June and the other in autumn in the Estuary and Gulf of St. Lawrence. Historically, 3 fixed stations were sampled more frequently. One of these is the Rimouski station that still takes part of the program and is sampled about weekly throughout the summer and occasionally in the winter period. Annual reports (physical, biological and a Zonal Scientific Advice) are available from the Canadian Science Advisory Secretariat (CSAS), (http://www.dfo-mpo.gc.ca/csas-sccs/index-eng.htm). Devine, L., Scarratt, M., Plourde, S., Galbraith, P.S., Michaud, S., and Lehoux, C. 2017. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/034. v + 48 pp. Supplemental Information Phytoplankton samples are collected using Niskin bottles, preserved with acid Lugol solution and analysed according to AZMP sampling protocol: Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain, P. 2002. Atlantic Zonal Monitoring Program sampling protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223: iv + 23 pp.
Arctic SDI catalogue