oceans
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
A towfish containing sidescan and video hardware was used to map eelgrass in two shallow northern New Brunswick estuaries. The sidescan and video data were useful in documenting suspected impacts of oyster aquaculture gear and eutrophication on eelgrass. With one boat and a crew of three, the mapping was accomplished at a rate of almost 10 km2 per day. That rate far exceeds what could be accomplished by a SCUBA based survey with the same crew. Moreover, the towfish survey applied with a complementary echosounder survey is potentially a more cost effective mapping method than satellite based remote sensing. Cite this data as: Vandermeulen H. Data of: Bay Scale Assessment of Eelgrass Beds Using Sidescan and Video - Richibucto 2007. Published: October 2017. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/ca7af8ba-8810-4de5-aa91-473613b0b38d
-
This product displays for Fluoranthene, median values of the last 6 available years that have been measured per matrix and are present in EMODnet regional contaminants aggregated datasets, v2022. The median values ranges are derived from the following percentiles: 0-25%, 25-75%, 75-90%, >90%. Only "good data" are used, namely data with Quality Flag=1, 2, 6, Q (SeaDataNet Quality Flag schema). For water, only surface values are used (0-15 m), for sediment and biota data at all depths are used.
-
Data layers show commercial fishery footprints for directed fisheries using bottom and pelagic longlines for groundfish and large pelagics respectively, and traps for hagfish, LFA 41 and Grey Zone lobster, snow crab, and other crab on the Scotian Shelf, the Bay of Fundy, and Georges Bank in NAFO Divisions 4VWX and Canadian portions of 5Y and 5Z. Bottom longline and trap fishery maps aggregate commercial logbook effort (bottom longline soak time and logbook entries) per 2-minute grid cell using 2002–2017 data. Pelagic longline maps aggregate speed-filtered vessel monitoring system (VMS) track lines as vessel minutes per km2 on a base-10 log scale using 2003–2018 data. The following data layers are included in the mapping service for use in marine spatial planning and ecological risk assessment: 1) multi-year and quarterly composite data layers for bottom longline and trap gear, and 2) multi-year and monthly composite data layers for pelagic longline gear. Additional details are available online: S. Butler, D. Ibarra and S. Coffen-Smout, 2019. Maritimes Region Longline and Trap Fisheries Footprint Mapping for Marine Spatial Planning and Risk Assessment. Can. Tech. Rep. Fish. Aquat. Sci. 3293: v + 30 p. http://publications.gc.ca/collections/collection_2019/mpo-dfo/Fs97-6-3293-eng.pdf
-
Description: Seasonal climatologies (temperature, salinity, and sigma-t) of the Northeast Pacific Ocean were computed from historical observations including all available conductivity-temperature-depth (CTD), bottle, expendable bathy-thermograph (XBT), and Argo data in NOAA (http://www.argo.ucsd.edu/), Marine Environmental Data Service (MEDS), and Institute of Ocean Sciences archives over 1980 to 2010 period in spatial resolution ranging from approximately 100m to 70km. Methods: Calculations, including smooth and interpolation, were carried out in sixty-five subregions and up to fifty-two vertical levels from surface to 5000m. Seasonal averages were computed as the median of yearly seasonal values. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. Uncertainties: Uncertainties are introduced when quality controlled observational data are spatially interpolated to varying distances from the observation point. Climatological averages are calculated from these interpolated values.
-
This product displays for Mercury, positions with values counts that have been measured per matrix for each year and are present in EMODnet regional contaminants aggregated datasets, v2024. The product displays positions for every available year.
-
This dataset was compiled as part of a multiyear effort lead by Fisheries and Oceans Canada (DFO) to support sustainable aquaculture regulation in the Coast of Bays, an area of the south coast of Newfoundland. It is the first of a series aiming to provide an oceanographic knowledge baseline of the Coast of Bays. This dataset consists of GIS products and analyses summarized in a spreadsheet. The GIS data include vector shapefiles and raster TIFF images, providing information on the area of interest physical dimensions (e.g. bays area, volume, perimeter, length and width) and other physical characteristics (e.g. tidal volume and freshwater input). A full description of the data and of its use in the context of the motivating project can be found in http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2017/2017_076-eng.html. Analyses from this dataset were presented during a Canadian Science Advisory Secretariat (CSAS) meeting which took place in St John’s in March 2015 (http://www.dfo-mpo.gc.ca/csas-sccs/schedule-horraire/2015/03_25-26b-eng.html) and from which a Science Advisory Report (http://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2016/2016_039-eng.html) and Proceedings (http://www.dfo-mpo.gc.ca/csas-sccs/Publications/Pro-Cr/2017/2017_043-eng.html) were published.
-
The Brier Island/Digby Neck area has been identified as an Ecologically and Biologically Significant Area (EBSA) by Fisheries and Oceans Canada and is one of four marine areas within the Bay of Fundy recognised by Parks Canada as of national significance for marine conservation planning. The area is representative of important outer Bay of Fundy features with significant marine mammal, bird, and benthic diversity including potentially important aggregations of sensitive benthic species such as horse mussel and sponge. Much of the information used for this recognition is now over 40 years old and should be re-validated using standardised georeferenced survey methods. As a first phase, a diver-based survey of the sublittoral habitats and associated species was conducted in August and September of 2017 for the Brier Island area. This report summarises the major sublittoral habitat types, species assemblages, and oceanographic conditions observed at 20 locations including Northwest and Southwest Ledges, Gull Rock, Peter’s Island, and Grand Passage. A total of 962 records were made of 178 taxa, consisting of 43 algae and 135 animals. Comparison with historical records largely confirmed the continued presence of unique habitats and species assemblages for which this area was initially recognised as an EBSA. Differences in species richness observed for cryptic and less known taxonomic groups such as sponges and bryozoans were attributable to changes in survey methods and knowledge. Based on these findings, additional surveys of inshore and offshore Brier Island using more quantitative methods developed for other Bay of Fundy EBSAs would further support regional MPA network planning and provide relative scales of species diversity and habitat coverage for this area.
-
This product displays for Nickel, median values of the last 6 available years that have been measured per matrix and are present in EMODnet regional contaminants aggregated datasets, v2022. The median values ranges are derived from the following percentiles: 0-25%, 25-75%, 75-90%, >90%. Only "good data" are used, namely data with Quality Flag=1, 2, 6, Q (SeaDataNet Quality Flag schema). For water, only surface values are used (0-15 m), for sediment and biota data at all depths are used.
-
EMODnet Chemistry aims to provide access to marine chemistry datasets and derived data products concerning eutrophication, acidity and contaminants. The importance of the selected substances and other parameters relates to the Marine Strategy Framework Directive (MSFD). This aggregated dataset contains all unrestricted EMODnet Chemistry data on eutrophication and acidity, and covers the Greater North Sea and Celtic Seas. Data were aggregated and quality controlled by 'Aarhus University, Department of Bioscience, Marine Ecology Roskilde' in Denmark. ITS-90 water temperature and water body salinity variables have also been included ('as are') to complete the eutrophication and acidity data. If you use these variables for calculations, please refer to SeaDataNet for the quality flags: https://www.seadatanet.org/Products/Aggregated-datasets . Regional datasets concerning eutrophication and acidity are automatically harvested, and the resulting collections are aggregated and quality controlled using ODV Software and following a common methodology for all sea regions ( https://doi.org/10.13120/8xm0-5m67 ). Parameter names are based on P35 vocabulary, which relates to EMODnet Chemistry aggregated parameter names and is available at: https://vocab.nerc.ac.uk/search_nvs/P35/ . When not present in original data, water body nitrate plus nitrite was calculated by summing all nitrate and nitrite parameters. The same procedure was applied for water body dissolved inorganic nitrogen (DIN), which was calculated by summing all nitrate, nitrite, and ammonium parameters. Concentrations per unit mass were converted to a unit volume using a constant density of 1.025 kg/L. The aggregated dataset can also be downloaded as an ODV collection and spreadsheet, which is composed of a metadata header followed by tab separated values. This spreadsheet can be imported to ODV Software for visualisation (more information can be found at: https://www.seadatanet.org/Software/ODV ).
-
This product displays for Benzo(a)pyrene, positions with percentages of all available data values per group of animals that are present in EMODnet regional contaminants aggregated datasets, v2022. The product displays positions for all available years.
Arctic SDI catalogue