Topic
 

oceans

1075 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1075
  • Categories  

    The Coastal Environmental Baseline Program is a multi-year Fisheries and Oceans Canada initiative designed to work with Indigenous and local communities and other key parties to collect coastal environmental data at six pilot sites across Canada (Port of Vancouver, Port of Prince Rupert, Lower St. Lawrence Estuary, Port of Saint John, Placentia Bay, and Iqaluit). The goal of the Program is to gather local information in these areas in effort to build a better understanding of marine ecological conditions. The Maritimes region has developed a habitat classification program to align with the oceanographic interests and data needs of local communities and stakeholders, with the goal of sharing this information via open data. In 2020, a habitat survey in the lower Musquash Marine Protected Area (MPA) was undertaken to further develop this project, using an Autonomous Underwater Vehicle (AUV) equipped with high-frequency (450 kHz) side scan sonar to build a habitat map of the MPA. This dataset includes mosaicked series of sonar images (raw & position-corrected versions), covering roughly 6 km2 of marine and intertidal areas in the Musquash MPA. Doppler Velocity logs and mission-specific files for each survey are also included, along with detailed methodological documentation. These data were generated from 17 separate survey missions that were completed in August, September and October 2020.

  • Categories  

    Description: The Regional Freshwater Index Layers dataset is composed of five single-band raster layers in GeoTIFF format. Each layer corresponds to a marine region, which generally coincide with the following layers from the Species Distribution Modelling Boundaries dataset: Nearshore_HG, Nearshore_NCC, Nearshore_QCS, Nearshore_WCVI, and Shelf_SalishSea. The main purpose of the dataset is to supplement existing layers that are used for species distribution modelling in the Pacific nearshore marine environment. Each regional freshwater index layer has the same spatial resolution and extent as other predictor layers for the corresponding region. While salinity layers exist from oceanographic models, they may not capture local difference from smaller scale rivers and streams entering the marine environment. Therefore, these layers are meant to complement salinity layers and are not suitable as a replacement for salinity data in species modelling. Methods: The cell values represent an estimate of freshwater influence on a 0-1 scale, where a higher value represents a greater level of freshwater influence. Details on how these values are determined is described in the supplemental information section of the metadata. The main data source for these derived products is the B.C. Freshwater Atlas, including the stream network and river polygons layers. Uncertainties: The values in the rasters are not a measure of salinity. The units are an index representing the level of freshwater influence weighted by the stream order and rescaled across regions on a 0-1 scale where only the region with the greatest value has a range of values 0-1 and the other regions are scaled relatively. This is done to ensure that values in one region can be compared to values in another region. As a result, some regions have very small values because the Salish Sea with the Fraser River is dominant, even after applying a rescale factor to the data.

  • Categories  

    This layer details Important Areas (IAs) relevant to key invertebrate species (which are not corals or sponges) in the Pacific North Coast Integrated Management Area (PNCIMA). This data was mapped to inform the selection of marine Ecologically and Biologically Significant Areas (EBSA). Experts have indicated that these areas are relevant based upon their high ranking in one or more of three criteria (Uniqueness, Aggregation and Fitness Consequences). The distribution of IAs within ecoregions is used in the designation of EBSAs. Canada’s Oceans Act provides the legislative framework for an integrated ecosystem approach to management in Canadian oceans, particularly in areas considered ecologically or biologically significant. DFO has developed general guidance for the identification of ecologically or biologically significant areas. The criteria for defining such areas include uniqueness, aggregation, fitness consequences, resilience, and naturalness. This science advisory process identifies proposed EBSAs in Canadian Pacific marine waters, specifically in the Strait of Georgia (SOG), along the west coast of Vancouver Island (WCVI, southern shelf ecoregion), and in the Pacific North Coast Integrated Management Area (PNCIMA, northern shelf ecoregion). Initial assessment of IAs in PNCIMA was carried out in September 2004 to March 2005 with spatial data collection coordinated by Cathryn Clarke. Subsequent efforts in WCVI and SOG were conducted in 2009, and may have used different scientific advisors, temporal extents, data, and assessment methods. WCVI and SOG IA assessment in some cases revisits data collected for PNCIMA, but should be treated as a separate effort. Other datasets in this series detail IAs for birds, cetaceans, coral and sponges, fish, geographic features, and other vertebrates. Though data collection is considered complete, the emergence of significant new data may merit revisiting of IAs on a case by case basis.

  • Categories  

    Mean zooplankton biomass (g/m³) at the 46 stations grouped into Atlantic Zone Monitoring Program (AZMP) transects under Quebec region responsibility. Mean zooplankton wet weights of the last ten years are displayed as 4 layers in june (2013-2022, 2020 not sampled) and 4 layers in november (2013-2022). The 4 layers stand for total zooplankton, mesozooplankton, macrozooplankton and euphausiids. The attached files contain the biomass data: a .png file for each station, showing time series of biomass for the total zooplankton and the euphausiids, and a .csv file containing the data themselves (columns : Station,Date(UTC), Latitude, Longitude, Sounding(m), Depth_max/Profondeur_max(m), Depth_min/Profondeur_min(m), Mesozooplankton/Mésozooplancton(g/m³), Macrozooplankton/Macrozooplancton(g/m³), Zooplankton/Zooplancton(g/m³), Euphausiids/Euphausides(g/m³)). Purpose The Atlantic Zone Monitoring Program (AZMP) was implemented in 1998 with the aim of increasing the Department of Fisheries and Oceans Canada’s (DFO) capacity to detect, track and predict changes in the state and productivity of the marine environment. The AZMP collects data from a network of stations composed of high-frequency monitoring sites and cross-shelf sections in each following DFO region: Québec, Gulf, Maritimes and Newfoundland. The sampling design provides basic information on the natural variability in physical, chemical, and biological properties of the Northwest Atlantic continental shelf. Cross-shelf sections sampling provides detailed geographic information but is limited in a seasonal coverage while critically placed high-frequency monitoring sites complement the geography-based sampling by providing more detailed information on temporal changes in ecosystem properties. In Quebec region, two surveys (46 stations grouped into transects) are conducted every year, one in June and the other in autumn in the Estuary and Gulf of St. Lawrence. Historically, 3 fixed stations were sampled more frequently. One of these is the Rimouski station that still takes part of the program and is sampled about weekly throughout the summer and occasionally in the winter period. Annual reports (physical, biological and a Zonal Scientific Advice) are available from the Canadian Science Advisory Secretariat (CSAS), (http://www.dfo-mpo.gc.ca/csas-sccs/index-eng.htm). Devine, L., Scarratt, M., Plourde, S., Galbraith, P.S., Michaud, S., and Lehoux, C. 2017. Chemical and Biological Oceanographic Conditions in the Estuary and Gulf of St. Lawrence during 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/034. v + 48 pp. Supplemental Information Zooplankton is sampled by bottom-surface vertical net tow with a conic 202 µm net and preserved in a 4% solution of buffered formaldehyde according to AZMP sampling protocol: Mitchell, M. R., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain, P. 2002. Atlantic Zonal Monitoring Program sampling protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223: iv + 23 pp.

  • Categories  

    This dataset provides projected 30-year, 50-year, and 100-year return levels for harbours in British Columbia by 2050 and 2100 under a low emission scenario SSP126, relative to the mean sea level over 1993-2020. The return levels are a combination of estimated present extreme sea levels and projected mean sea level rise. The present extreme sea levels are derived from hourly coastal sea levels for the period from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM). The projected mean sea level rise is derived from the regional mean sea level rise data of the IPCC 6th Assessment Report under SSP126, adjusted for the local vertical land motion

  • Categories  

    Cumulative scores of various environmental and anthropogenic drivers of change of the benthic ecosystem across the eight Arctic Marine Areas (AMA). A cumulative score is the median score of sub-regions per AMA (Table 3.3.1). Median score for the whole Arctic is given in the centre. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - <a href="https://arcticbiodiversity.is/findings/benthos" target="_blank">Chapter 3</a> - Page 100 - Figure 3.3.7

  • Categories  

    This is a point layer of the names and locations of the actively used commercial shipping anchorages in British Columbia. These point locations were manually compiled from available port guides and documents. The objective of this dataset is to provide a consolidated file containing all active commercial shipping anchorage locations as there has been a lack of consistency between different sources due to variations in names and locations in different datasets and historical changes to anchorage locations.

  • Categories  

    Trends in biomass or diversity of benthic Focal Ecosystem Components across each Arctic Marine Area. STATE OF THE ARCTIC MARINE BIODIVERSITY REPORT - Chapter 4 - Page 179 - Figure 4.3

  • Categories  

    EBSAs (Source: CBD 2016) and marine “areas of heightened ecological and cultural significance” (Source: AMAP/CAFF/SDWG, 2013). In 2013, the Arctic Council identified “Areas of heightened ecological and cultural significance” using the International Maritime Organization criteria for Particularly Sensitive Sea Areas (PSSAs), which are similar to the CBD Ecologically and Biologically Significant Areas (EBSAs) criteria. The term “areas of heightened ecological and cultural significance” comes from Recommendation IIC of the Arctic Council’s 2009 Arctic Marine Shipping Assessment: ARCTIC PROTECTED AREAS - INDICATOR REPORT 2017

  • Categories  

    EMODnet Chemistry aims to provide access to marine chemistry data sets and derived data products concerning eutrophication, acidity and contaminants. The chemicals chosen reflect importance to the Marine Strategy Framework Directive (MSFD). ITS-90 water temperature and Water body salinity variables have been also included (as-is) to complete the Eutrophication and Acidity data. If you use these variables for calculations, please refer to SeaDataNet for having the quality flags: https://www.seadatanet.org/Products/Aggregated-datasets . This aggregated dataset contains all unrestricted EMODnet Chemistry data on Eutrophication and Acidity (15 parameters with quality flag indicators), and covers the North Sea with 4685228 CDI records. Data were aggregated and quality controlled by 'Aarhus University, Department of Bioscience, Marine Ecology Roskilde' from Denmark. Regional datasets concerning eutrophication and acidity are automatically harvested and resulting collections are aggregated and quality controlled using ODV Software and following a common methodology for all Sea Regions ( https://doi.org/10.6092/9f75ad8a-ca32-4a72-bf69-167119b2cc12). When not present in original data, Water body nitrate plus nitrite was calculated by summing up the Nitrates and Nitrites. Same procedure was applied for Water body dissolved inorganic nitrogen (DIN) which was calculated by summing up the Nitrates, Nitrites and Ammonium. Quality flags for Water body dissolved inorganic nitrogen (DIN) should be disregarded since that currently they are not based on the original quality flags of nitrite, nitrate and ammonium. Parameter names are based on P35, EMODnet Chemistry aggregated parameter names vocabulary, which is available at: https://www.bodc.ac.uk/resources/vocabularies/vocabulary_search/P35/. Detailed documentation is available at: https://doi.org/10.6092/ec8207ef-ed81-4ee5-bf48-e26ff16bf02e The aggregated dataset can be downloaded as ODV spreadsheet, which is composed of metadata header followed by tab separated values. This worksheet can be imported to ODV Software for visualisation (More information can be found at: http://www.seadatanet.org/Standards-Software/Software/ODV). The original datasets can be searched and downloaded from EMODnet Chemistry Download Service: https://emodnet-chemistry.maris.nl/search