Format

SHP

1634 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1634
  • Categories  

    The Urban Atlas provides pan-European comparable land use and land cover data for Functional Urban Areas (FUA). The Street Tree Layer (STL) is a separate layer from the Urban Atlas 2012 LU/LC layer produced within the level 1 urban mask for each FUA. It includes contiguous rows or a patches of trees covering 500 m² or more and with a minimum width of 10 meter over "Artificial surfaces" (nomenclature class 1) inside FUA (i.e. rows of trees along the road network outside urban areas or forest adjacent to urban areas should not be included). Urban Atlas is a joint initiative of the European Commission Directorate-General for Regional and Urban Policy and the Directorate-General for Enterprise and Industry in the frame of the EU Copernicus programme, with the support of the European Space Agency and the European Environment Agency.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    The land division system used for describing the extent of oil and gas interests located in the Northwest Territories, Nunavut or in Canada's offshore area is defined in the Canada Oil and Gas Land Regulations. This land division system consists of a grid system divided into Grid Areas, Sections, and Units – all referenced to the North American Datum of 1927 (NAD27). This data provides the geo-spatial representation of the NAD27 Oil and Gas Grid Areas referenced to NAD83 Datum. The creation of the Oil and Gas Grid Areas geo-spatial file covers areas that are situated in the Northwest Territories, Nunavut or Sable Island as well as submarine areas, not within a province, in the internal waters of Canada, the territorial sea of Canada or the continental shelf of Canada beyond 200 nm zone. The NAD83 grid area boundaries are defined by geodesics joining the four grid area corners. For sections and units, the eastern and western grid area geodesic boundaries are partitioned into 40 equal segments. The northern and southern grid area geodesic boundaries are partitioned into 40, 32 or 24 equal segments, depending on latitude. All internal corners at the section and unit level are defined by the intersections of north-south and east-west geodesics joining corresponding partition points along the northern and southern, and eastern and western, grid area geodesic boundaries.

  • Categories  

    Upplýsingar um eldissvæði í sjókvíaeldi sem eru í umsóknarferli hjá Matvælastofnun.

  • Categories  

    Línurnar sýna friðunarsvæði, þar sem eldi laxfiska (fam. salmonidae) í sjókvíum er óheimilt skv. auglýsingu nr. 460/2004.

  • Categories  

    The rationale for developing this product was the recognized need for a standard and adaptable marine grid that could be used for planning or analysis purposes across projects. This nested grid has five spatial resolutions: 8km, 4km, 2km, 1km, and 500m. It covers the extent of the EEZ on the Canadian Pacific coast, and further east in order to encompass the Fraser River Delta and Puget Sound to account for ecological importance.

  • Categories  

    This project was completed by the Coastal Environmental Baseline Program (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). From 2018 to 2022 baseline biological and physical data were collected in Placentia Bay using Atlantic Zone Monitoring Program (AZMP) and Cold Ocean Productivity Experiment (COPE) protocols. Complementary data were collected in the bay using moored CTDs. Where possible, sampling was conducted monthly at 4 sites between May and November to capture broad scale spatial and temporal trends. Additionally, data were collected bi-weekly in April and May, and monthly from June to September at one of these sites to capture finer scale temporal trends, such as spring blooms, in collaboration with Dr. C. McKenzie. Phytoplankton were collected using vertical net tows and niskins. Zooplankton were collected using vertical net tows. CTDs were used to collect physical and biogeochemical water column data including temperature, pressure, salinity, depth, chlorophyll-a, turbidity, dissolved oxygen, pH, photosynthetic active radiation (PAR), fluorescent dissolved organic matter (FDOM), and conductivity. Water biogeochemistry data were obtained by collecting water samples with niskins at depths of 5, 10, 20, 30, 40m, and 10m above bottom to measure nutrients, chlorophyll-a, carbonates, and particulate organic carbon and nitrogen (POC/PON). Additionally, eDNA samples were taken at each of the 4 sampling sites. This record contains the geographic locations of the sites, and information on the timing and type of data collected at each site.

  • Categories  

    Eldissvæði er svæði sem úthlutað er rekstarleyfishafa. Rekstrarleyfishafi hefur þá heimild til að hafa eldisbúnað til að ala fisk innan þess svæðis skv. skilyrðum rekstrarleyfisins.

  • Categories  

    The Oceans Act (1997) commits Canada to maintaining biological diversity and productivity in the marine environment. A key component of this is to identify areas that are considered ecologically or biologically significant. Fisheries and Oceans Canada (DFO) Science has developed guidance on the identification of Ecologically or Biologically Significant Areas (EBSAs) (DFO 2004) and has endorsed the scientific criteria of the Convention on Biological Diversity (CBD) for identifying ecologically or biologically significant marine areas as defined in Annex I of Decision IX/20 of its 9th Conference of Parties. These criteria were applied to the Newfoundland and Labrador (NL) Shelves Bioregion in two separate data-driven processes. The first process focused on the area north of the Placentia Bay-Grand Banks (PBGB) Large Ocean Management Area (LOMA) (DFO 2013). The second process focused on the PBGB area (DFO 2019), where EBSAs had previously been identified using a more Delphic approach (Templeman 2007). In both cases, an EBSA Steering Committee, comprised of experts in oceanography, ecosystem structure and function, taxa-specific life histories and Geographic Information Systems (GIS) guided the process by advising or aiding in the identification, collection, processing and analysis of data layers, as well as participating in the final selection of candidate EBSAs (Wells et al. 2017, Ollerhead et al. 2017, Wells et al. 2019). All information was compiled in a GIS and a hierarchical approach was used to review individual data layers and groupings of data layers. Peer review meetings were held for both processes, during which candidate EBSAs were reviewed and the final EBSAs were agreed upon and delineated. In the northern study area, a total of fifteen EBSAs were identified and described; three of these areas are primarily coastal areas; seven are in offshore areas; four EBSAs straddle coastal and offshore areas; and one is a transitory EBSA that follows the southern extent of pack ice. In the PBGB study area, fourteen EBSAs were identified in two different categories: seven based on coastal data and seven based on offshore data. In comparing the new PBGB EBSAs to those identified in 2007, nine of them overlap spatially and are based on similar features; however, there were some variations in the boundaries. Two of the EBSAs that were identified in 2007 were no longer considered EBSAs in 2017, but portions of both of these areas were captured in part by other EBSAs. Five new EBSAs were identified in areas not previously considered. References: DFO, 2004. Identification of Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Ecosystem Status Rep. 2004/006. DFO. 2013. Identification of additional Ecologically and Biologically Significant Areas (EBSAs) within the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2013/048. DFO. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area to Identify Ecologically and Biologically Significant Areas . DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/040. Ollerhead, L.M.N., Gullage, M., Trip, N., and Wells, N. 2017. Development of Spatially Referenced Data Layers for Use in the Identification and Delineation of Candidate Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/036. v + 38 p Templeman, N.D. 2007. Placentia Bay-Grand Banks Large Ocean Management Area Ecologically and Biologically Significant Areas. Can. Sci. Advis. Sec. Res. Doc. 2007/052: iii + 15 p. Wells, N.J., Stenson, G.B., Pepin, P., and Koen-Alonso, M. 2017. Identification and Descriptions of Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/013. v + 87 p. Wells, N., K. Tucker, K. Allard, M. Warren, S. Olson, L. Gullage, C. Pretty, V. Sutton-Pande and K. Clarke. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area of the Newfoundland and Labrador Shelves Bioregion to Identify and Describe Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/049. viii + 138 p.

  • Categories  

    Kelp features were taken from digitized survey source fieldsheets produced by the Canadian Hydrographic Service (CHS). The area covered by this dataset encompasses various surveyed areas along the western coast of North America in British Columbia coastal waters. CHS has an extensive collection of hydrographic survey data in the form of field sheets based on over 100 years of surveying in Canada. Data has been collected using a wide range of methods and systems, from lead-line to modern day multi-transducer and multibeam systems. Positions have been established using the different types of terrestrial systems and methods available over many years - up to the latest advanced satellite positioning systems. Fieldsheets that had not been previously digitizted were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping Fieldsheets. Finally, the kelp features were digitized, and corresponding chart information (category of kelp, scale, source, title, year, and comments) was added as attributes to each feature. When digitizing kelp features the points were located at the optical center of the feature being digitized. This dataset includes a point and a polygon layer. Kelp that is located on land is historically valid. Symbolized kelp is not always an exact location but indicates that kelp is present in the area. The symbol is a proxy. The kelp attribute field does not distinguish between different types of kelp. The field has three variables that are kelp, seaweed and Aquatic Plants. Seaweed is the general name for marine plants of the Algae class which grow in long narrow ribbons. (International Maritime Dictionary, 2nd Ed.) Kelp is one of an order (laminariales) of usually large, blade-shaped or vine-like brown algae. (IHO Dictionary, S-32, 5th Edition, 2611) Aquatic Plants – Aquatic plants are used as to represent vegetation in fresh water rivers and lakes. Geographically encompasses the kelp in the Western Coastal waters of North America (mainly Canada) and Temporally overlaps/continues from data extracted from the British Admiralties.