Format

SHP

1621 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1621
  • Categories  

    The marks left in the seabed by the commercial anchoring process can be seen as linear features in high-resolution multibeam bathymetry data. These features have been digitized to polylines for individual marks and polygons for anchor scour zones for British Columbia's (BC) commercial anchorages. They are made available via the Federal Geospatial Platform (FGP) for use in a Geographical Information System (GIS). This feature dataset is complete for published BC commercial anchorages and the multibeam bathymetry data available in 2021. It does not represent features produced since the collection of each multibeam bathymetry survey nor any features infilled since. The data are intended to be used for scientific research to better understand the cumulative impacts to the seabed from commercial anchoring at a 1:5000 scale or greater.

  • Categories  

    AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Vase tunicate (Ciona intestinalis) 2012 The Vase tunicate, is a high impact solitary invader and was first detected by DFO in 2012 on the Burin Peninsula at Ship Cove and Little Bay, Placentia Bay. Various mitigation measures (McKenzie et al. 2016b) contained this invasive tunicate to a small area for six years within Placentia Bay. First detected in Fortune Bay as an established population in 2019, increasing reports of the Vase tunicate have been made along the south coast of Newfoundland. The data provided here indicates the detections of this AIS in coastal NL. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.

  • Categories  

    AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Violet tunicate (Botrylloides violaceus) 2007 The violet tunicate was first detected in NL waters in 2007 in Belleoram, Fortune Bay on wharf structures and vessels (McKenzie et al. 2016b). This colonial tunicate forms irregular shaped colonies usually of a solid color (orange, purple, yellow or cream). It is currently found in relatively small colonies in four harbours in NL; Placentia Bay (1), Fortune Bay (1), Conception Bay (1) and the west coast of NL (2). The data provided here indicates the detections of this AIS in coastal NL. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.

  • Categories  

    The Permafrost Information Network (PIN) geotechnical borehole database combines existing database compilations into a standard structure. The standardized database was created to be accessible from the PIN web application as a data layer. Further information regarding data compilation can be accessed from the PIN web application.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    The rationale for developing this product was the recognized need for a standard and adaptable marine grid that could be used for planning or analysis purposes across projects. This nested grid has five spatial resolutions: 8km, 4km, 2km, 1km, and 500m. It covers the extent of the EEZ on the Canadian Pacific coast, and further east in order to encompass the Fraser River Delta and Puget Sound to account for ecological importance.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    A vector representation of stream networks is a crucial dataset for the modelling the surface water and groundwater components of the hydrologic cycle. For many usages a crucial attribute of the drainage network is a digital topology and hierarchal stream order attribute (e.g., Strahler stream order). In Canada jurisdictional stream networks are available for the provinces and territories and nationally for Canada in the National Hydrological Network (NHN) dataset. Unfortunately, the NHN data lacks the same topological and attribute information that is available for numerous provinces due to standardization for the entire country. For Canada1Water it was also necessary to have a harmonized dataset with the United States, for both the southern transboundary watersheds and the Alaskan watersheds. This report documents the processes completed to upgrade the topological and graph network support for NHN and provide continuous connectivity with US datasets. It also highlights and corrects a number of stream density and stream order issues that occur within Canada across provincial and territorial borders and NTS tiles. All vector processing was completed in RivEX software extension for ArcMap. Following complete topological correction stream classification was assigned and a table of the node graph network developed. Additional work was then completed to normalize stream density particularly amongst low-order streams between British Columbia and the Yukon and amongst local NTS tiles in Quebec and Ontario. Corrected NHN Strahler stream order assignment was validated against a number of provincial and watershed datasets, all of which already have Strahler stream order attributed. These datasets are the same underlying digitized vector data, so there are no differences in node or polyline positions. Strahler stream order assignment validation was only done by visual comparison as due to differences in vector segments a statistical comparison is complicated. The transboundary integrated C1W stream network with complete classification provides a seamless national dataset to support transdisciplinary studies (fisheries, wildlife, health, pesticide and nutrient issues, mining impact, ecosystem restoration, numeric modelling) that involve a knowledge of stream distribution and ranking.

  • Categories  

    The European Urban Atlas provides reliable, inter-comparable, high-resolution land use maps for 305 Large Urban Zones and their surroundings (more than 100.000 inhabitants as defined by the Urban Audit) for the reference year 2006 in EU member states. Urban Atlas is a joint initiative of the European Commission Directorate-General for Regional and Urban Policy and the Directorate-General for Enterprise and Industry in the frame of the EU Copernicus programme, with the support of the European Space Agency and the European Environment Agency.

  • Categories  

    Aquatic invasive species (AIS) are non-native species that pose ecological and/or economic threats to Canada's coastal waters and resources. In response, Fisheries and Oceans Canada (DFO) established a program to detect and track the spread of aquatic invasive species in Canadian waters (2006). In the Newfoundland and Labrador (NL) Region, these species include biofouling organisms (tunicates, bryozoans, crustaceans, seaweeds), European Green Crab, and recently, several freshwater species (data not available at this time). DFO NL Science monitors for AIS in partnership with other DFO branches, the provincial government, Memorial University, including the Marine Institute, industry, first nations, and NGOs. Methods for detecting AIS used by DFO and their partners, include settlement plates, trapping, seining, eDNA (water samples), qPCR (species confirmation), SCUBA surveys along wharves, floating docks and vessel hulls, and video surveys at high-risk harbours. The data collected from DFO's monitoring program and their partners provides an overview of the distribution of AIS in the NL Region. This information can be used by the general public, scientists, and DFO managers. AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Golden star tunicate (Botryllus schlosseri) 2006 The Golden star tunicate was the first invasive tunicate detected in NL waters. It was reported in Argentia by the US Navy around 1945. It was found in 2006 on wharf structures in Argentia, Placentia Bay during the first AIS survey (Callahan et al 2010). This colonial tunicate is recognized by it star shaped grouping of individuals within the colony. It is currently found in Placentia Bay, Fortune Bay, St. Mary’s Bay, Conception Bay and the west coast of NL. The data provided here indicates the detections of this AIS in coastal NL. Violet tunicate (Botrylloides violaceus) 2007 The violet tunicate was first detected in NL waters in 2007 in Belleoram, Fortune Bay on wharf structures and vessels (McKenzie et al. 2016b). This colonial tunicate forms irregular shaped colonies usually of a solid color (orange, purple, yellow or cream). It is currently found in relatively small colonies in four harbours in NL; Placentia Bay (1), Fortune Bay (1), Conception Bay (1) and the west coast of NL (2). The data provided here indicates the detections of this AIS in coastal NL. Vase tunicate (Ciona intestinalis) 2012 The Vase tunicate, is a high impact solitary invader and was first detected by DFO in 2012 on the Burin Peninsula at Ship Cove and Little Bay, Placentia Bay. Various mitigation measures (McKenzie et al. 2016b) contained this invasive tunicate to a small area for six years within Placentia Bay. First detected in Fortune Bay as an established population in 2019, increasing reports of the Vase tunicate have been made along the south coast of Newfoundland. The data provided here indicates the detections of this AIS in coastal NL. Bryozoans Coffin box bryozoan (Membranipora membranacea) 2002 The Coffin box is a bryozoan (filter feeding animal) that forms white colored encrusting colonies, particularly on seaweed, but also on vessels and other surfaces. The cells are rectangular or “coffin box” shaped. It was first detected on the west coast of NL in 2002 and has since spread throughout the island, including southern Labrador. The data provided here indicates the detections of this AIS in coastal NL. Orange ripple bryozoan (Schizoporella japonica Ortmann) 2022 The Orange ripple bryozoan is an orange heavily calcified encrusting species found mainly on man made structures, rocks, shellfish, and vessels. It was first identified in NL in 2022 in Arnold’s Cove, Placentia Bay, but has likely been in NL for at least two years and is now suspected in several locations in Placentia Bay and Fortune Bay. A 2023 survey of the south coast of NL found several harbours invaded by this species. The data provided here indicates the detections of this AIS in coastal NL. Crustaceans (Biofouling) Japanese skeleton shrimp (Caprella mutica) 2006 The Japanese skeleton shrimp is tiny (1.5 -3.5 cm) and was first found on settlement plates in Placentia Bay during the first AIS biofouling survey in 2006. This species is currently found in many places in Placentia Bay, Conception Bay, Trinity Bay, and on the south coast of NL. This species inhabits, sometimes in large numbers (100,000s) ropes, moorings, and docks. The data provided here indicates the detections of this AIS in coastal NL. Seaweed Oyster thief (Codium fragile) 2012 Oyster thief is a green seaweed with thick spongy Y-shaped branches that resemble fingers (another common name is dead man’s fingers). This invasive species was first found in Placentia Bay in 2012. It is now found in several locations in Placentia Bay and Fortune Bay. It has also been found in one location in Notre Dame Bay. The data provided here indicates the detections of this AIS in coastal NL. AIS NL European green crab Fisheries and Oceans Canada's (DFO) AIS Science Program conducts annual field surveys to monitor the introduction, establishment, spread, and relative abundance of the European green crab in the NL region since 2006. Standardized monitoring and trapping protocols (McKenzie et al. 2022) are used by DFO's NL, Maritimes, Gulf, Quebec, and Pacific regions. The Fukui trap is the most commonly used trap but other methods are also used including shoreline collection, seining, and SCUBA dive surveys. Fukui traps have been deployed annually at both new and long-term monitoring locations throughout coastal Newfoundland and Labrador, particularly within Placentia Bay where they were first detected in North Harbour in 2007 (Blakeslee et al. 2010). It should be noted that there are two different populations of European Green Crab, a hybridized population in Placentia, St. Mary’s, and Fortune Bays and a cold tolerant population on the west and southwestern coast of NL (Lehnert et al. 2018). After initial detection in 2007, a separate invasion occurred in 2009 on the west coast of NL, and this cold-tolerant population is spreading eastward along the south coast toward areas inhabited by the original hybrid strain. The data provided here indicates the detections of this AIS in coastal NL. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Green Crab Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.