Format

SHP

1631 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1631
  • Categories  

    This project was completed by the Productive Capacity group (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). American lobster (Homarus americanus) is a commercially important decapod crustacean species along the east coast of North America, ranging from the Labrador coast south to Cape Hatteras. Juvenile lobster < 40 mm CL (carapace length) recruitment has been studied extensively in the southern portions of their range. However, investigations of settlement habitat association and recruitment of juvenile lobster in the northern extremes along the Newfoundland coast have been largely unsuccessful. We investigated juvenile lobster density, habitat, and depth associations in three areas of Newfoundland, using scuba – Port Saunders area, 8 dives conducted 28 September - 2 October 2017, and Burin Peninsula 10 dives (7 Placentia Bay, 3 Fortune Bay) conducted 30 September - 4 October 2018 over a total seabed area of 9,138 m2, within 200 meters of shore. Port Saunders and Fortune Bay had relatively higher lobster density (0.09 and 0.40 m-2, respectively); >65% were juveniles, in contrast to Placentia Bay where lobster densities of all size groups were low (mean 0.01 m-2) and no juvenile lobsters were observed at all. Where observed all juvenile lobster were significantly associated with shallow (<6 m) habitat and showed no overlap with distribution of adults (>82.5 mm CL) which we observed at depths 6 to 17 m. Our sites were dominated by varying mixes of cobble and pebble (77%); rock/bedrock (12%) and mud/sand/small pebble (11%) substrates interspersed with overlying kelp (32%) and eelgrass (11%) vegetation. We observed no significant associations with substrate or vegetation. This record contains the geographic locations of the 7 Placentia Bay sites surveyed, and information on the timing and type of data collected at each site, which was one component supported by Coastal Environmental Baseline Program of a larger collaborative project.

  • Categories  

    This dataset is a contribution to the development of a kelp distribution vector dataset. Bull kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) are important canopy-forming kelp species found in marine nearshore habitats on the West coast of Canada. Often referred to as a foundation species, beds of kelp form structural underwater forests that offer habitat for fishes and invertebrates. Despite its far-ranging importance, kelp has experienced a decline in the west coast of North America. The losses have been in response to direct harvest, increase in herbivores through the removal of predators by fisheries or diseases, increase in water turbidity from shoreline development as well as sea temperature change, ocean acidification, and increased storm activates. Understanding these impacts and the level of resilience of different kelp populations requires spatiotemporal baselines of kelp distribution. The area covered by this dataset includes the BC coast and extends to portions of the Washington and Alaska coasts. This dataset was created using 137 British Admiralty (BA) charts, including insets, with scales ranging from 1:6,080 to 1:500,000, created between 1858 and 1956. All surveys were based on triangulation, in which a sextant or theodolite was used to determine latitude and angles, while a chronometer was used to help determine longitude. First, each BA chart was scanned by the Canadian Hydrographic Service (CHS) using the CHS Colortrac large format scanner, and saved as a Tagged Image Format at 200 DPI, which was deemed sufficient resolution to properly visualize all the features of interest. Subsequently, the scanned charts were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping BA charts. Finally, the kelp features were digitized, and corresponding chart information (scale, chart number, title, survey start year, survey end year, and comments) was added as attributes to each feature. Given the observed differences in kelp feature representation at different scales, when digitizing kelp features, polygons were used to represent the discrete observations, and as such, they represent presence of kelp and not kelp area. Polygons were created by tracing around the kelp feature, aiming to keep the outline close to the stipe and blades. The accuracy of the location of the digitized kelp features was defined using a reliability criterion, which considers the location of the digitized kelp feature (polygon) in relation to the local depth in which the feature occurs. For this, we defined a depth threshold of 40 m to represent a low likelihood of kelp habitat in areas deeper than the threshold. An accuracy assessment of the digitized kelp features concluded that 99% of the kelp features occurred in expected areas within a depth of less than 40 m, and only about 1% of the features occurred completely outside of this depth.

  • Categories  

    This project was completed by the Coastal Environmental Baseline Program (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). From 2018 to 2022 baseline biological and physical data were collected in Placentia Bay using Atlantic Zone Monitoring Program (AZMP) and Cold Ocean Productivity Experiment (COPE) protocols. Complementary data were collected in the bay using moored CTDs. Where possible, sampling was conducted monthly at 4 sites between May and November to capture broad scale spatial and temporal trends. Additionally, data were collected bi-weekly in April and May, and monthly from June to September at one of these sites to capture finer scale temporal trends, such as spring blooms, in collaboration with Dr. C. McKenzie. Phytoplankton were collected using vertical net tows and niskins. Zooplankton were collected using vertical net tows. CTDs were used to collect physical and biogeochemical water column data including temperature, pressure, salinity, depth, chlorophyll-a, turbidity, dissolved oxygen, pH, photosynthetic active radiation (PAR), fluorescent dissolved organic matter (FDOM), and conductivity. Water biogeochemistry data were obtained by collecting water samples with niskins at depths of 5, 10, 20, 30, 40m, and 10m above bottom to measure nutrients, chlorophyll-a, carbonates, and particulate organic carbon and nitrogen (POC/PON). Additionally, eDNA samples were taken at each of the 4 sampling sites. This record contains the geographic locations of the sites, and information on the timing and type of data collected at each site.

  • Categories  

    Water temperature and water level are significant environmental factors affecting ecology of anadromous fish. Large-scale freshwater monitoring networks remain sparse, yet environmental protocols rely heavily on water temperature and water levels to assist decision making on river closures. Our river monitoring project in Newfoundland and Labrador provides river water temperature and river water level for salmon rivers across the province. 72 temperature loggers are deployed across 24 river systems in Newfoundland and Labrador. Temperature loggers are deployed in approximately 30 cm of water and remain in river year-round. Loggers consist of Onset level loggers, tidbit loggers, and pendants or Innovasea minilogs. Some loggers are deployed in duplicate at locations to provide data redundancy in event of equipment loss or failure. Equipment is monitored throughout the season to ensure proper placement in water columns, with downloads taking place during monitoring trips.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    DFO’s Oceans and Coastal Management Division (OCMD) in the Maritimes Region has updated its fisheries landings maps for 2010–2014. These maps will be used for decision making in coastal and oceans management, including mitigating human use conflicts, informing environmental emergency response operations and protocols, informing Marine Stewardship Council certification processes, planning marine protected area networks, assessing ecological risks, and monitoring compliance and threats in coral and sponge closures and Marine Protected Areas. Fisheries maps were created to identify important fishing areas using aggregate landed weight (kg) per 2 x 2-minute grid cell for selected species/gear types. This dataset has been filtered to comply with the Government of Canada's privacy policy. Privacy assessments were conducted to identify NAFO unit areas containing data with less than five vessel IDs, license IDs and fisher IDs. If this threshold was not met, catch weight locations were withheld from these unit areas to protect the identity or activity of individual vessels or companies. Maps were created for the following species/gear types: 1. Atlantic Halibut 2. Bluefin Tuna 3. Bottom Longline Groundfish 4. Bottom Trawl Groundfish 5. Cod 6. Cod, Haddock, Pollock 7. Cusk 8. Dogfish 9. Flatfish 10. Gillnet Groundfish 11. Greenland Halibut 12. Groundfish 13. Groundfish (quarterly composites Q1, Q2, Q3, Q4) 14. Hagfish 15. Herring 16. Large Pelagics 17. Mackerel 18. Monkfish 19. Offshore Clam 20. Offshore Lobster 21. Grey Zone Lobster 22. Other Crab 23. Other Tuna 24. Pollock 25. Porbeagle, Mako and Blue Shark 26. Red Hake 27. Redfish 28. Scallop 29. Scallop (quarterly composites Q1, Q2, Q3, Q4) 30. Sculpin 31. Sea Urchin 32. Shrimp 33. Silver Hake 34. Skate 35. Snow Crab 36. Squid 37. Swordfish 38. White Hake 39. Wolffish

  • Categories  

    Fisheries landings and effort mapping of the inshore lobster fishery on the DFO Maritimes Region statistical grid (2012-2014). This report describes an analysis of Maritimes Region inshore lobster logbook data reported at a grid level, including Bay of Fundy Grey Zone data reported at the coordinate level. Annual and composite (2012–2014) grid maps were produced for landings, number of license-days fished, number of trap hauls, and the same series standardized by grid area, as well as maps of catch weight per number of trap hauls as an index of catch per unit effort (CPUE). Spatial differences in fishing pressure, landings, and CPUE are indicated, and potential mapping applications are outlined. Mapping the distribution and intensity of inshore lobster fishing activity has management applications for spatial planning and related decision support. The lack of region-wide latitude and longitude coordinates for lobster effort and landings limits the utility of commercial logbook data for marine spatial planning purposes.

  • Categories  

    The European Urban Atlas provides reliable, inter-comparable, high-resolution land use maps for 305 Large Urban Zones and their surroundings (more than 100.000 inhabitants as defined by the Urban Audit) for the reference year 2006 in EU member states. Urban Atlas is a joint initiative of the European Commission Directorate-General for Regional and Urban Policy and the Directorate-General for Enterprise and Industry in the frame of the EU Copernicus programme, with the support of the European Space Agency and the European Environment Agency.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    Aquatic invasive species (AIS) are non-native species that pose ecological and/or economic threats to Canada's coastal waters and resources. In response, Fisheries and Oceans Canada (DFO) established a program to detect and track the spread of aquatic invasive species in Canadian waters (2006). In the Newfoundland and Labrador (NL) Region, these species include biofouling organisms (tunicates, bryozoans, crustaceans, seaweeds), European Green Crab, and recently, several freshwater species (data not available at this time). DFO NL Science monitors for AIS in partnership with other DFO branches, the provincial government, Memorial University, including the Marine Institute, industry, first nations, and NGOs. Methods for detecting AIS used by DFO and their partners, include settlement plates, trapping, seining, eDNA (water samples), qPCR (species confirmation), SCUBA surveys along wharves, floating docks and vessel hulls, and video surveys at high-risk harbours. The data collected from DFO's monitoring program and their partners provides an overview of the distribution of AIS in the NL Region. This information can be used by the general public, scientists, and DFO managers. AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Golden star tunicate (Botryllus schlosseri) 2006 The Golden star tunicate was the first invasive tunicate detected in NL waters. It was reported in Argentia by the US Navy around 1945. It was found in 2006 on wharf structures in Argentia, Placentia Bay during the first AIS survey (Callahan et al 2010). This colonial tunicate is recognized by it star shaped grouping of individuals within the colony. It is currently found in Placentia Bay, Fortune Bay, St. Mary’s Bay, Conception Bay and the west coast of NL. The data provided here indicates the detections of this AIS in coastal NL. Violet tunicate (Botrylloides violaceus) 2007 The violet tunicate was first detected in NL waters in 2007 in Belleoram, Fortune Bay on wharf structures and vessels (McKenzie et al. 2016b). This colonial tunicate forms irregular shaped colonies usually of a solid color (orange, purple, yellow or cream). It is currently found in relatively small colonies in four harbours in NL; Placentia Bay (1), Fortune Bay (1), Conception Bay (1) and the west coast of NL (2). The data provided here indicates the detections of this AIS in coastal NL. Vase tunicate (Ciona intestinalis) 2012 The Vase tunicate, is a high impact solitary invader and was first detected by DFO in 2012 on the Burin Peninsula at Ship Cove and Little Bay, Placentia Bay. Various mitigation measures (McKenzie et al. 2016b) contained this invasive tunicate to a small area for six years within Placentia Bay. First detected in Fortune Bay as an established population in 2019, increasing reports of the Vase tunicate have been made along the south coast of Newfoundland. The data provided here indicates the detections of this AIS in coastal NL. Bryozoans Coffin box bryozoan (Membranipora membranacea) 2002 The Coffin box is a bryozoan (filter feeding animal) that forms white colored encrusting colonies, particularly on seaweed, but also on vessels and other surfaces. The cells are rectangular or “coffin box” shaped. It was first detected on the west coast of NL in 2002 and has since spread throughout the island, including southern Labrador. The data provided here indicates the detections of this AIS in coastal NL. Orange ripple bryozoan (Schizoporella japonica Ortmann) 2022 The Orange ripple bryozoan is an orange heavily calcified encrusting species found mainly on man made structures, rocks, shellfish, and vessels. It was first identified in NL in 2022 in Arnold’s Cove, Placentia Bay, but has likely been in NL for at least two years and is now suspected in several locations in Placentia Bay and Fortune Bay. A 2023 survey of the south coast of NL found several harbours invaded by this species. The data provided here indicates the detections of this AIS in coastal NL. Crustaceans (Biofouling) Japanese skeleton shrimp (Caprella mutica) 2006 The Japanese skeleton shrimp is tiny (1.5 -3.5 cm) and was first found on settlement plates in Placentia Bay during the first AIS biofouling survey in 2006. This species is currently found in many places in Placentia Bay, Conception Bay, Trinity Bay, and on the south coast of NL. This species inhabits, sometimes in large numbers (100,000s) ropes, moorings, and docks. The data provided here indicates the detections of this AIS in coastal NL. Seaweed Oyster thief (Codium fragile) 2012 Oyster thief is a green seaweed with thick spongy Y-shaped branches that resemble fingers (another common name is dead man’s fingers). This invasive species was first found in Placentia Bay in 2012. It is now found in several locations in Placentia Bay and Fortune Bay. It has also been found in one location in Notre Dame Bay. The data provided here indicates the detections of this AIS in coastal NL. AIS NL European green crab Fisheries and Oceans Canada's (DFO) AIS Science Program conducts annual field surveys to monitor the introduction, establishment, spread, and relative abundance of the European green crab in the NL region since 2006. Standardized monitoring and trapping protocols (McKenzie et al. 2022) are used by DFO's NL, Maritimes, Gulf, Quebec, and Pacific regions. The Fukui trap is the most commonly used trap but other methods are also used including shoreline collection, seining, and SCUBA dive surveys. Fukui traps have been deployed annually at both new and long-term monitoring locations throughout coastal Newfoundland and Labrador, particularly within Placentia Bay where they were first detected in North Harbour in 2007 (Blakeslee et al. 2010). It should be noted that there are two different populations of European Green Crab, a hybridized population in Placentia, St. Mary’s, and Fortune Bays and a cold tolerant population on the west and southwestern coast of NL (Lehnert et al. 2018). After initial detection in 2007, a separate invasion occurred in 2009 on the west coast of NL, and this cold-tolerant population is spreading eastward along the south coast toward areas inhabited by the original hybrid strain. The data provided here indicates the detections of this AIS in coastal NL. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Green Crab Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.