Format

SHP

1625 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1625
  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    Akkeri og baujur og áætlaðar staðsetningar fyrir búnað í sjókvíaeldi.

  • Categories  

    Upplýsingar um eldissvæði í sjókvíaeldi sem eru í umsóknarferli hjá Matvælastofnun.

  • Categories  

    Herring Section shapefile - used for spatial analysis/presentation of data from Herring Stock Assessment Database.

  • Categories  

    This model is derived from geological, geophysical and other forms of geodata. Feature extraction used deep learning. Predictive modelling made use of the deep ensemble method. Displayed is a Pan-Canadian probability map of mineral potential of graphite. This map was generated using known graphite deposits and occurrences and their associated features. Higher probability values highlight areas with an increased probability of graphite mineral systems.

  • Categories  

    AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Golden star tunicate (Botryllus schlosseri) 2006 The Golden star tunicate was the first invasive tunicate detected in NL waters. It was reported in Argentia by the US Navy around 1945. It was found in 2006 on wharf structures in Argentia, Placentia Bay during the first AIS survey (Callahan et al 2010). This colonial tunicate is recognized by it star shaped grouping of individuals within the colony. It is currently found in Placentia Bay, Fortune Bay, St. Mary’s Bay, Conception Bay and the west coast of NL. The data provided here indicates the detections of this AIS in coastal NL. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.

  • Categories  

    AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Violet tunicate (Botrylloides violaceus) 2007 The violet tunicate was first detected in NL waters in 2007 in Belleoram, Fortune Bay on wharf structures and vessels (McKenzie et al. 2016b). This colonial tunicate forms irregular shaped colonies usually of a solid color (orange, purple, yellow or cream). It is currently found in relatively small colonies in four harbours in NL; Placentia Bay (1), Fortune Bay (1), Conception Bay (1) and the west coast of NL (2). The data provided here indicates the detections of this AIS in coastal NL. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.

  • Categories  

    Water temperature and water level are significant environmental factors affecting ecology of anadromous fish. Large-scale freshwater monitoring networks remain sparse, yet environmental protocols rely heavily on water temperature and water levels to assist decision making on river closures. Our river monitoring project in Newfoundland and Labrador provides river water temperature and river water level for salmon rivers across the province. 72 temperature loggers are deployed across 24 river systems in Newfoundland and Labrador. Temperature loggers are deployed in approximately 30 cm of water and remain in river year-round. Loggers consist of Onset level loggers, tidbit loggers, and pendants or Innovasea minilogs. Some loggers are deployed in duplicate at locations to provide data redundancy in event of equipment loss or failure. Equipment is monitored throughout the season to ensure proper placement in water columns, with downloads taking place during monitoring trips.

  • Categories  

    This project was completed by the Productive Capacity group (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). American lobster (Homarus americanus) is a commercially important decapod crustacean species along the east coast of North America, ranging from the Labrador coast south to Cape Hatteras. Juvenile lobster < 40 mm CL (carapace length) recruitment has been studied extensively in the southern portions of their range. However, investigations of settlement habitat association and recruitment of juvenile lobster in the northern extremes along the Newfoundland coast have been largely unsuccessful. We investigated juvenile lobster density, habitat, and depth associations in three areas of Newfoundland, using scuba – Port Saunders area, 8 dives conducted 28 September - 2 October 2017, and Burin Peninsula 10 dives (7 Placentia Bay, 3 Fortune Bay) conducted 30 September - 4 October 2018 over a total seabed area of 9,138 m2, within 200 meters of shore. Port Saunders and Fortune Bay had relatively higher lobster density (0.09 and 0.40 m-2, respectively); >65% were juveniles, in contrast to Placentia Bay where lobster densities of all size groups were low (mean 0.01 m-2) and no juvenile lobsters were observed at all. Where observed all juvenile lobster were significantly associated with shallow (<6 m) habitat and showed no overlap with distribution of adults (>82.5 mm CL) which we observed at depths 6 to 17 m. Our sites were dominated by varying mixes of cobble and pebble (77%); rock/bedrock (12%) and mud/sand/small pebble (11%) substrates interspersed with overlying kelp (32%) and eelgrass (11%) vegetation. We observed no significant associations with substrate or vegetation. This record contains the geographic locations of the 7 Placentia Bay sites surveyed, and information on the timing and type of data collected at each site, which was one component supported by Coastal Environmental Baseline Program of a larger collaborative project.

  • Categories  

    Kelp features were taken from digitized survey source fieldsheets produced by the Canadian Hydrographic Service (CHS). The area covered by this dataset encompasses various surveyed areas along the western coast of North America in British Columbia coastal waters. CHS has an extensive collection of hydrographic survey data in the form of field sheets based on over 100 years of surveying in Canada. Data has been collected using a wide range of methods and systems, from lead-line to modern day multi-transducer and multibeam systems. Positions have been established using the different types of terrestrial systems and methods available over many years - up to the latest advanced satellite positioning systems. Fieldsheets that had not been previously digitizted were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping Fieldsheets. Finally, the kelp features were digitized, and corresponding chart information (category of kelp, scale, source, title, year, and comments) was added as attributes to each feature. When digitizing kelp features the points were located at the optical center of the feature being digitized. This dataset includes a point and a polygon layer. Kelp that is located on land is historically valid. Symbolized kelp is not always an exact location but indicates that kelp is present in the area. The symbol is a proxy. The kelp attribute field does not distinguish between different types of kelp. The field has three variables that are kelp, seaweed and Aquatic Plants. Seaweed is the general name for marine plants of the Algae class which grow in long narrow ribbons. (International Maritime Dictionary, 2nd Ed.) Kelp is one of an order (laminariales) of usually large, blade-shaped or vine-like brown algae. (IHO Dictionary, S-32, 5th Edition, 2611) Aquatic Plants – Aquatic plants are used as to represent vegetation in fresh water rivers and lakes. Geographically encompasses the kelp in the Western Coastal waters of North America (mainly Canada) and Temporally overlaps/continues from data extracted from the British Admiralties.