Format

SHP

1637 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1637
  • Categories  

    Riparian zones represent transitional areas occurring between land and freshwater ecosystems, characterised by distinctive hydrology, soil and biotic conditions and strongly influenced by the stream water. They provide a wide range of riparian functions (e.g. chemical filtration, flood control, bank stabilization, aquatic life and riparian wildlife support, etc.) and ecosystem services. The Riparian Zones products support the objectives of several European legal acts and policy initiatives, such as the EU Biodiversity Strategy to 2020, the Habitats and Birds Directives and the Water Framework Directive. This metadata refers to the Riparian Zones Land Cover/Land Use (LC/LU) change for 2012-2018. The LC/LU classification is tailored to the needs of biodiversity monitoring in a variable buffer zone of selected rivers (Strahler levels 2-9 derived from EU-Hydro) for the change layer 2012-2018. LC/LU is extracted from Very High Resolution (VHR) satellite data and other available data in a buffer zone of selected rivers for supporting biodiversity monitoring and mapping and assessment of ecosystems and their services. The class definitions follow the pre-defined nomenclature on the basis of Mapping and Assessment of Ecosystems and their Services (MAES) typology of ecosystems (Level 1 to Level 4) and CORINE Land Cover. The classification provides 55 distinct thematic classes with a Minimum Mapping Unit (MMU) of 0.5 ha and a Minimum Mapping Width (MMW) of 10 m. The production of the Riparian Zones products was coordinated by the European Environment Agency in the frame of the EU Copernicus programme.

  • Categories  

    Herring Section shapefile - used for spatial analysis/presentation of data from Herring Stock Assessment Database.

  • Categories  

    This data depicts the locations of Short Rotation Woody Crop (SRWC) research, development and demonstration sites established across Canada by the Canadian Wood Fibre Centre, its partners and/or private land owners. Short Rotation Woody Crops represent enormous potential with respect to future sources of bioenergy and/or sinks for carbon. Since 2002, the Silviculture Innovation Group of the Canadian Wood Fibre Centre has established over 1 000 hectares of "high yield afforestation", “mixedwood afforestation” and "concentrated woody biomass" SRWC systems across Canada. The refinement of the biological and operational components of these systems is ongoing to improve production efficiencies, reduce costs, and enhance site sustainability. Development, assessment and validation of value-chain options for the establishment, recovery, transportation, handling and conditioning phases of these short rotation woody feedstock systems is also being performed. The refinement and demonstration of operational logistics along with the identification of supply and value-chain options will promote the concept of SRWC from basic research and development to the point of commercial uptake.

  • Categories  

    This project was completed by the Productive Capacity group (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). American lobster (Homarus americanus) is a commercially important decapod crustacean species along the east coast of North America, ranging from the Labrador coast south to Cape Hatteras. Juvenile lobster < 40 mm CL (carapace length) recruitment has been studied extensively in the southern portions of their range. However, investigations of settlement habitat association and recruitment of juvenile lobster in the northern extremes along the Newfoundland coast have been largely unsuccessful. We investigated juvenile lobster density, habitat, and depth associations in three areas of Newfoundland, using scuba – Port Saunders area, 8 dives conducted 28 September - 2 October 2017, and Burin Peninsula 10 dives (7 Placentia Bay, 3 Fortune Bay) conducted 30 September - 4 October 2018 over a total seabed area of 9,138 m2, within 200 meters of shore. Port Saunders and Fortune Bay had relatively higher lobster density (0.09 and 0.40 m-2, respectively); >65% were juveniles, in contrast to Placentia Bay where lobster densities of all size groups were low (mean 0.01 m-2) and no juvenile lobsters were observed at all. Where observed all juvenile lobster were significantly associated with shallow (<6 m) habitat and showed no overlap with distribution of adults (>82.5 mm CL) which we observed at depths 6 to 17 m. Our sites were dominated by varying mixes of cobble and pebble (77%); rock/bedrock (12%) and mud/sand/small pebble (11%) substrates interspersed with overlying kelp (32%) and eelgrass (11%) vegetation. We observed no significant associations with substrate or vegetation. This record contains the geographic locations of the 7 Placentia Bay sites surveyed, and information on the timing and type of data collected at each site, which was one component supported by Coastal Environmental Baseline Program of a larger collaborative project.

  • Categories  

    The Urban Atlas provides pan-European comparable land use and land cover data for Functional Urban Areas (FUA). The Street Tree Layer (STL) is a separate layer from the Urban Atlas 2012 LU/LC layer produced within the level 1 urban mask for each FUA. It includes contiguous rows or a patches of trees covering 500 m² or more and with a minimum width of 10 meter over "Artificial surfaces" (nomenclature class 1) inside FUA (i.e. rows of trees along the road network outside urban areas or forest adjacent to urban areas should not be included). Urban Atlas is a joint initiative of the European Commission Directorate-General for Regional and Urban Policy and the Directorate-General for Enterprise and Industry in the frame of the EU Copernicus programme, with the support of the European Space Agency and the European Environment Agency.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    The Oceans Act (1997) commits Canada to maintaining biological diversity and productivity in the marine environment. A key component of this is to identify areas that are considered ecologically or biologically significant. Fisheries and Oceans Canada (DFO) Science has developed guidance on the identification of Ecologically or Biologically Significant Areas (EBSAs) (DFO 2004) and has endorsed the scientific criteria of the Convention on Biological Diversity (CBD) for identifying ecologically or biologically significant marine areas as defined in Annex I of Decision IX/20 of its 9th Conference of Parties. These criteria were applied to the Newfoundland and Labrador (NL) Shelves Bioregion in two separate data-driven processes. The first process focused on the area north of the Placentia Bay-Grand Banks (PBGB) Large Ocean Management Area (LOMA) (DFO 2013). The second process focused on the PBGB area (DFO 2019), where EBSAs had previously been identified using a more Delphic approach (Templeman 2007). In both cases, an EBSA Steering Committee, comprised of experts in oceanography, ecosystem structure and function, taxa-specific life histories and Geographic Information Systems (GIS) guided the process by advising or aiding in the identification, collection, processing and analysis of data layers, as well as participating in the final selection of candidate EBSAs (Wells et al. 2017, Ollerhead et al. 2017, Wells et al. 2019). All information was compiled in a GIS and a hierarchical approach was used to review individual data layers and groupings of data layers. Peer review meetings were held for both processes, during which candidate EBSAs were reviewed and the final EBSAs were agreed upon and delineated. In the northern study area, a total of fifteen EBSAs were identified and described; three of these areas are primarily coastal areas; seven are in offshore areas; four EBSAs straddle coastal and offshore areas; and one is a transitory EBSA that follows the southern extent of pack ice. In the PBGB study area, fourteen EBSAs were identified in two different categories: seven based on coastal data and seven based on offshore data. In comparing the new PBGB EBSAs to those identified in 2007, nine of them overlap spatially and are based on similar features; however, there were some variations in the boundaries. Two of the EBSAs that were identified in 2007 were no longer considered EBSAs in 2017, but portions of both of these areas were captured in part by other EBSAs. Five new EBSAs were identified in areas not previously considered. References: DFO, 2004. Identification of Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Ecosystem Status Rep. 2004/006. DFO. 2013. Identification of additional Ecologically and Biologically Significant Areas (EBSAs) within the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2013/048. DFO. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area to Identify Ecologically and Biologically Significant Areas . DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/040. Ollerhead, L.M.N., Gullage, M., Trip, N., and Wells, N. 2017. Development of Spatially Referenced Data Layers for Use in the Identification and Delineation of Candidate Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/036. v + 38 p Templeman, N.D. 2007. Placentia Bay-Grand Banks Large Ocean Management Area Ecologically and Biologically Significant Areas. Can. Sci. Advis. Sec. Res. Doc. 2007/052: iii + 15 p. Wells, N.J., Stenson, G.B., Pepin, P., and Koen-Alonso, M. 2017. Identification and Descriptions of Ecologically and Biologically Significant Areas in the Newfoundland and Labrador Shelves Bioregion. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/013. v + 87 p. Wells, N., K. Tucker, K. Allard, M. Warren, S. Olson, L. Gullage, C. Pretty, V. Sutton-Pande and K. Clarke. 2019. Re-evaluation of the Placentia Bay-Grand Banks Area of the Newfoundland and Labrador Shelves Bioregion to Identify and Describe Ecologically and Biologically Significant Areas. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/049. viii + 138 p.

  • Categories  

    The rationale for developing this product was the recognized need for a standard and adaptable marine grid that could be used for planning or analysis purposes across projects. This nested grid has five spatial resolutions: 8km, 4km, 2km, 1km, and 500m. It covers the extent of the EEZ on the Canadian Pacific coast, and further east in order to encompass the Fraser River Delta and Puget Sound to account for ecological importance.

  • Categories  

    This project was completed by the Coastal Environmental Baseline Program (Coastal and Freshwater Ecology Section) in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). From 2020-2023, there were semi-annual deployments and retrievals of 3 moored CTDs in the bay. From 2020 to November 2021, moored CTDs collected hourly recordings of conductivity, temperature and pressure. From 2021 through 2023, these CTDs collected year-round, hourly, information on temperature, conductivity, pressure, dissolved oxygen, and chlorophyll-a. Acoustic releases also collected hourly ambient noise (mV) data. This record contains the geographic locations of the sites, and information on the timings and types of data collected at each site.

  • Categories  

    The land division system used for describing the extent of oil and gas interests located in the Northwest Territories, Nunavut or in Canada's offshore area is defined in the Canada Oil and Gas Land Regulations. This land division system consists of a grid system divided into Grid Areas, Sections, and Units – all referenced to the North American Datum of 1927 (NAD27). This data provides the geo-spatial representation of the NAD27 Oil and Gas Grid Areas referenced to NAD83 Datum. The creation of the Oil and Gas Grid Areas geo-spatial file covers areas that are situated in the Northwest Territories, Nunavut or Sable Island as well as submarine areas, not within a province, in the internal waters of Canada, the territorial sea of Canada or the continental shelf of Canada beyond 200 nm zone. The NAD83 grid area boundaries are defined by geodesics joining the four grid area corners. For sections and units, the eastern and western grid area geodesic boundaries are partitioned into 40 equal segments. The northern and southern grid area geodesic boundaries are partitioned into 40, 32 or 24 equal segments, depending on latitude. All internal corners at the section and unit level are defined by the intersections of north-south and east-west geodesics joining corresponding partition points along the northern and southern, and eastern and western, grid area geodesic boundaries.