SHP
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
Pepin et al. (2014) stated that three nested spatial scales were identified as relevant for the development of ecosystem summaries and management plans: Bioregion, Ecosystem Production Unit (EPU), and Ecoregion. A bioregion is composed by one or more EPUs, while an EPU consists of a combination of ecoregions, which represent elements with different physical and biological characteristics based on the analytical criteria applied. Pepin et al. (2014) reported on the consolidation of data and analyses of ecoregion structure for the continental shelf areas from the Labrador Sea to the mid-Atlantic Bight and provided recommendations on the definition of EPUs in the NAFO Convention Area. The results of two K-means clustering analyses (one geographically constrained and one un-constrained) and expert knowledge (including and considering location of ecoregions, knowledge of the distribution of major marine resources and fish stocks, and geographic proximity for delineation/definition of potential management units) served as guides for evaluation by NAFO’s (North Atlantic Fisheries Organization) working group on ecosystem science and assessments (WG-ESA). The final consensus from the discussions identified eight (8) major EPUs that can serve as practical candidate management units (from the 50 m isobaths, where research vessel data were available, seaward to the 1500 m isobaths) that consist of the Labrador Shelf (NAFO subareas 2GH), the northeast Newfoundland Shelf (subareas 2J3K), the Grand Banks (subareas 3LNO), Flemish Cap (subarea 3M), the Scotian Shelf (subareas 4VnsWX), Georges Bank (parts of subareas 5Ze and 5Zw), the Gulf of Maine (subarea 5Y and part of 5Ze) and the mid-Atlantic Bight (part of subarea 5Zw and subareas 6ABC). Southern Newfoundland (subarea 3Ps) was not included in the original analysis because fall survey data were unavailable. However, it was later added as an EPU after additional analysis of the fish community structure and trends using survey data from the spring, which indicated that this area is heavily influenced by the surrounding EPUs (NAFO 2015). The proposed candidate management units correspond to the EPUs that define major areas within the bioregions which contain a reasonably well defined food web/production system. The working group noted that the consensus solution represents a compromise that aims to define management units based on the boundaries of existing NAFO subareas that are appropriate for estimation of ecosystem and fishery production. References: NAFO. 2015. Report of the 8th Meeting of the NAFO Scientific Council (SC) Working Group on Ecosystem Science and Assessment (WGESA). 17-26 November 2015, Dartmouth, Canada. NAFO SCS Doc. 15/19. Pepin, P., Higdon, J., Koen-Alonso, M., Fogarty, M., and N. Ollerhead. 2014. Application of ecoregion analysis to the identification of Ecosystem Production Units (EPUs) in the NAFO Convention Area. NAFO SCR Doc. 14/069.
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
This project was completed by the Salmonids Section in the Newfoundland and Labrador Science Branch of Fisheries and Oceans Canada (DFO). The Coastal Environmental Baseline Program has supported efforts in 2018 and 2019 of tagged Atlantic salmon smolts leaving the Bay de L’eau River and Rushoon River region of Placentia Bay. This was part of a larger four year tracking study in this region (2018, 2019, 2021, 2022) trying to improve DFO’s understanding of the residency, survival, and migration routes of Atlantic salmon smolts during the first months at sea within northwest Placentia Bay. As of spring 2023, four years of detection data were being processed with the goal of presenting this work at the next Atlantic salmon CSAS meeting and developing a primary publication. This record contains the locations there smolt were tagged in Placentia Bay, NL.
-
DFO’s Oceans and Coastal Management Division (OCMD) in the Maritimes Region has updated its fisheries landings maps for 2010–2014. These maps will be used for decision making in coastal and oceans management, including mitigating human use conflicts, informing environmental emergency response operations and protocols, informing Marine Stewardship Council certification processes, planning marine protected area networks, assessing ecological risks, and monitoring compliance and threats in coral and sponge closures and Marine Protected Areas. Fisheries maps were created to identify important fishing areas using aggregate landed weight (kg) per 2 x 2-minute grid cell for selected species/gear types. This dataset has been filtered to comply with the Government of Canada's privacy policy. Privacy assessments were conducted to identify NAFO unit areas containing data with less than five vessel IDs, license IDs and fisher IDs. If this threshold was not met, catch weight locations were withheld from these unit areas to protect the identity or activity of individual vessels or companies. Maps were created for the following species/gear types: 1. Atlantic Halibut 2. Bluefin Tuna 3. Bottom Longline Groundfish 4. Bottom Trawl Groundfish 5. Cod 6. Cod, Haddock, Pollock 7. Cusk 8. Dogfish 9. Flatfish 10. Gillnet Groundfish 11. Greenland Halibut 12. Groundfish 13. Groundfish (quarterly composites Q1, Q2, Q3, Q4) 14. Hagfish 15. Herring 16. Large Pelagics 17. Mackerel 18. Monkfish 19. Offshore Clam 20. Offshore Lobster 21. Grey Zone Lobster 22. Other Crab 23. Other Tuna 24. Pollock 25. Porbeagle, Mako and Blue Shark 26. Red Hake 27. Redfish 28. Scallop 29. Scallop (quarterly composites Q1, Q2, Q3, Q4) 30. Sculpin 31. Sea Urchin 32. Shrimp 33. Silver Hake 34. Skate 35. Snow Crab 36. Squid 37. Swordfish 38. White Hake 39. Wolffish
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.
-
Riparian zones represent transitional areas occurring between land and freshwater ecosystems, characterised by distinctive hydrology, soil and biotic conditions and strongly influenced by the stream water. They provide a wide range of riparian functions (e.g. chemical filtration, flood control, bank stabilization, aquatic life and riparian wildlife support, etc.) and ecosystem services. The Riparian Zones products support the objectives of several European legal acts and policy initiatives, such as the EU Biodiversity Strategy to 2020, the Habitats and Birds Directives and the Water Framework Directive. This metadata refers to the Riparian Zones Land Cover/Land Use (LC/LU) change for 2012-2018. The LC/LU classification is tailored to the needs of biodiversity monitoring in a variable buffer zone of selected rivers (Strahler levels 2-9 derived from EU-Hydro) for the change layer 2012-2018. LC/LU is extracted from Very High Resolution (VHR) satellite data and other available data in a buffer zone of selected rivers for supporting biodiversity monitoring and mapping and assessment of ecosystems and their services. The class definitions follow the pre-defined nomenclature on the basis of Mapping and Assessment of Ecosystems and their Services (MAES) typology of ecosystems (Level 1 to Level 4) and CORINE Land Cover. The classification provides 55 distinct thematic classes with a Minimum Mapping Unit (MMU) of 0.5 ha and a Minimum Mapping Width (MMW) of 10 m. The production of the Riparian Zones products was coordinated by the European Environment Agency in the frame of the EU Copernicus programme.
-
CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.