Format

SHP

1627 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1627
  • Categories  

    Pepin et al. (2014) stated that three nested spatial scales were identified as relevant for the development of ecosystem summaries and management plans: Bioregion, Ecosystem Production Unit (EPU), and Ecoregion. A bioregion is composed by one or more EPUs, while an EPU consists of a combination of ecoregions, which represent elements with different physical and biological characteristics based on the analytical criteria applied. Pepin et al. (2014) reported on the consolidation of data and analyses of ecoregion structure for the continental shelf areas from the Labrador Sea to the mid-Atlantic Bight and provided recommendations on the definition of EPUs in the NAFO Convention Area. The results of two K-means clustering analyses (one geographically constrained and one un-constrained) and expert knowledge (including and considering location of ecoregions, knowledge of the distribution of major marine resources and fish stocks, and geographic proximity for delineation/definition of potential management units) served as guides for evaluation by NAFO’s (North Atlantic Fisheries Organization) working group on ecosystem science and assessments (WG-ESA). The final consensus from the discussions identified eight (8) major EPUs that can serve as practical candidate management units (from the 50 m isobaths, where research vessel data were available, seaward to the 1500 m isobaths) that consist of the Labrador Shelf (NAFO subareas 2GH), the northeast Newfoundland Shelf (subareas 2J3K), the Grand Banks (subareas 3LNO), Flemish Cap (subarea 3M), the Scotian Shelf (subareas 4VnsWX), Georges Bank (parts of subareas 5Ze and 5Zw), the Gulf of Maine (subarea 5Y and part of 5Ze) and the mid-Atlantic Bight (part of subarea 5Zw and subareas 6ABC). Southern Newfoundland (subarea 3Ps) was not included in the original analysis because fall survey data were unavailable. However, it was later added as an EPU after additional analysis of the fish community structure and trends using survey data from the spring, which indicated that this area is heavily influenced by the surrounding EPUs (NAFO 2015). The proposed candidate management units correspond to the EPUs that define major areas within the bioregions which contain a reasonably well defined food web/production system. The working group noted that the consensus solution represents a compromise that aims to define management units based on the boundaries of existing NAFO subareas that are appropriate for estimation of ecosystem and fishery production. References: NAFO. 2015. Report of the 8th Meeting of the NAFO Scientific Council (SC) Working Group on Ecosystem Science and Assessment (WGESA). 17-26 November 2015, Dartmouth, Canada. NAFO SCS Doc. 15/19. Pepin, P., Higdon, J., Koen-Alonso, M., Fogarty, M., and N. Ollerhead. 2014. Application of ecoregion analysis to the identification of Ecosystem Production Units (EPUs) in the NAFO Convention Area. NAFO SCR Doc. 14/069.

  • Categories  

    AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Violet tunicate (Botrylloides violaceus) 2007 The violet tunicate was first detected in NL waters in 2007 in Belleoram, Fortune Bay on wharf structures and vessels (McKenzie et al. 2016b). This colonial tunicate forms irregular shaped colonies usually of a solid color (orange, purple, yellow or cream). It is currently found in relatively small colonies in four harbours in NL; Placentia Bay (1), Fortune Bay (1), Conception Bay (1) and the west coast of NL (2). The data provided here indicates the detections of this AIS in coastal NL. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.

  • Categories  

    AIS NL Biofouling Species Fisheries and Oceans Canada's (DFO) National Marine Biofouling Monitoring Program conducts annual field surveys to monitor the introduction, establishment, spread, species richness, and relative abundance of native and some non-native species in Newfoundland and Labrador (NL) Region since 2006. Standardized monitoring protocols employed by DFO's NL, Maritimes, Gulf, and Quebec regions include biofouling collector plates deployed from May to October at georeferenced intertidal and shallow subtidal sites, including public docks, and public and private marinas and nautical clubs. Initially, (2006-2017), the collectors consisted of three 10 cm by 10 cm PVC plates deployed in a vertical array and spaced approximately 40 cm apart, with the shallowest plate suspended at least 1 m below the surface to sample subtidal and shallow intertidal species (McKenzie et al 2016a). Three replicate arrays were deployed at least 5 m apart per site. Since 2018, collector networks have been modified to improve statistical replication, including up to 10 individual collectors deployed per site at 1 m depth and at least 5 m apart (as above) from May to October. Since 2006, seven invasive biofouling organisms have been detected in Newfoundland and Labrador harbours, marinas and coastal areas. Should be cited as follows: DFO Newfoundland and Labrador Region Aquatic Invasive Species Marine Biofouling Monitoring Program. Published March 2024. Coastal and Freshwater Ecology, Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John’s, Newfoundland and Labrador. Reference: Tunicates Vase tunicate (Ciona intestinalis) 2012 The Vase tunicate, is a high impact solitary invader and was first detected by DFO in 2012 on the Burin Peninsula at Ship Cove and Little Bay, Placentia Bay. Various mitigation measures (McKenzie et al. 2016b) contained this invasive tunicate to a small area for six years within Placentia Bay. First detected in Fortune Bay as an established population in 2019, increasing reports of the Vase tunicate have been made along the south coast of Newfoundland. The data provided here indicates the detections of this AIS in coastal NL. From 2018-2022, the Coastal Environmental Baseline Program provided additional support to enhance sampling efforts in Placentia Bay.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • CanCoast is a geospatial database of the physical characteristics of Canada's marine coasts. It includes both feature classes that are not expected to change through time, and feature classes that are expected to change as climate changes. CanCoast includes: wave-height change with sea ice (early and late 21st century); sea-level change (early and late century); ground ice content; coastal materials; tidal range; and backshore slope. These are mapped to a common high-resolution shoreline and used to calculate indices that show the coastal sensitivity of Canada's marine coasts in modelled early and late 21st century climates.

  • Categories  

    Herring Section shapefile - used for spatial analysis/presentation of data from Herring Stock Assessment Database.

  • Categories  

    This dataset is a contribution to the development of a kelp distribution vector dataset. Bull kelp (Nereocystis leutkeana) and giant kelp (Macrocystis pyrifera) are important canopy-forming kelp species found in marine nearshore habitats on the West coast of Canada. Often referred to as a foundation species, beds of kelp form structural underwater forests that offer habitat for fishes and invertebrates. Despite its far-ranging importance, kelp has experienced a decline in the west coast of North America. The losses have been in response to direct harvest, increase in herbivores through the removal of predators by fisheries or diseases, increase in water turbidity from shoreline development as well as sea temperature change, ocean acidification, and increased storm activates. Understanding these impacts and the level of resilience of different kelp populations requires spatiotemporal baselines of kelp distribution. The area covered by this dataset includes the BC coast and extends to portions of the Washington and Alaska coasts. This dataset was created using 137 British Admiralty (BA) charts, including insets, with scales ranging from 1:6,080 to 1:500,000, created between 1858 and 1956. All surveys were based on triangulation, in which a sextant or theodolite was used to determine latitude and angles, while a chronometer was used to help determine longitude. First, each BA chart was scanned by the Canadian Hydrographic Service (CHS) using the CHS Colortrac large format scanner, and saved as a Tagged Image Format at 200 DPI, which was deemed sufficient resolution to properly visualize all the features of interest. Subsequently, the scanned charts were imported into ESRI ArcMap and georeferenced directly to WGS84 using CHS georeferencing standards and principles (charts.gc.ca). In order to minimize error, a hierarchy of control points was used, ranging from high survey order control points to comparing conspicuous stable rock features apparent in satellite imagery. The georeferencing result was further validated against satellite imagery, CHS charts and fieldsheets, the CHS-Pacific High Water Line (charts.gc.ca), and adjacent and overlapping BA charts. Finally, the kelp features were digitized, and corresponding chart information (scale, chart number, title, survey start year, survey end year, and comments) was added as attributes to each feature. Given the observed differences in kelp feature representation at different scales, when digitizing kelp features, polygons were used to represent the discrete observations, and as such, they represent presence of kelp and not kelp area. Polygons were created by tracing around the kelp feature, aiming to keep the outline close to the stipe and blades. The accuracy of the location of the digitized kelp features was defined using a reliability criterion, which considers the location of the digitized kelp feature (polygon) in relation to the local depth in which the feature occurs. For this, we defined a depth threshold of 40 m to represent a low likelihood of kelp habitat in areas deeper than the threshold. An accuracy assessment of the digitized kelp features concluded that 99% of the kelp features occurred in expected areas within a depth of less than 40 m, and only about 1% of the features occurred completely outside of this depth.

  • Categories  

    The rationale for developing this product was the recognized need for a standard and adaptable marine grid that could be used for planning or analysis purposes across projects. This nested grid has five spatial resolutions: 8km, 4km, 2km, 1km, and 500m. It covers the extent of the EEZ on the Canadian Pacific coast, and further east in order to encompass the Fraser River Delta and Puget Sound to account for ecological importance.

  • Categories  

    This model is derived from geological, geophysical and other forms of geodata. Feature extraction used deep learning. Predictive modelling made use of the deep ensemble method. Displayed is a Pan-Canadian probability map of mineral potential of graphite. This map was generated using known graphite deposits and occurrences and their associated features. Higher probability values highlight areas with an increased probability of graphite mineral systems.