Behaviour
Type of resources
Topics
Keywords
Provided by
Representation types
Update frequencies
status
-
Acoustic telemetry allows detailed observations of the movement behaviour of many species and as tags get smaller, smaller organisms may be tagged. The number of studies using acoustic telemetry to evaluate marine invertebrate movement is growing, but novel attachment methods include unknowns about the effects of tagging procedures on individual survival and behaviour. This study compared methods of tag attachment on green sea urchins (Strongylocentrotus droebachiensis) to determine the feasibility of using acoustic transmitters to track echinoid movement. Four tagging methods were compared in the lab and tag retention, urchin condition, and survival analysed. Two tagging methods (Dyneema® fishing line and T-bar tags) were evaluated in the field using an existing acoustic telemetry array. Urchins were tagged and the study area revisited one week and 2 months post-release by scuba divers to estimate movement and tag retention. The best methods in the lab, with high tag retention, survival, and minimal effects on urchin condition, were fishing line methods. T-bar tags, although showing high tag retention, caused significant mortality and had deleterious long-term effects on urchin condition and behaviour. After 2 months in the field, as in the lab, fishing line was a more effective tagging method. Urchins tagged with fishing line showed increased estimates of space occupancy compared to T-bar-tagged urchins and a single fishing-line tagged individual was found by divers in good health after 80 days. Combined, these laboratory and field results demonstrate the feasibility of using acoustic telemetry to observe urchin movement. Results strongly suggest that surgical attachment methods that minimize injuries at the attachment site should be prioritized for echinoid tagging studies. Together, lab and field tests indicate that acoustic telemetry is a promising method to examine marine echinoid movement over ecologically relevant spatial and temporal scales. The data available includes the laboratory data (tag retention, survival, diameter, wet weight, gonad weight and condition/righting time) and the field data (metadata and acoustic telemetry detections for tagged individuals, results of diver searches and 2-day estimates of movement measured in the field). Data from the laboratory experiment and diver observations in the field have been verified and undergone a control for quality. Acoustic telemetry detections are raw detection files (unfiltered); see the published article for a description of how the data were treated for analyses (https://doi.org/10.1186/s40317-022-00309-8).
-
The initial objective of this dataset was to study the seasonal movement patterns of harbour seals (Phoca vitulina) in the St. Lawrence Estuary and Sable Island. This study was part of a larger program that studied the foraging behavior of the species. Ten harbour seals were captured using gillnets from 1994 to 1998 at three sites in the St. Lawrence Estuary (Bic, n=1 individual; île Blanche, n=1; Métis-sur-Mer, n=5) and one site on Sable Island (n=3 individuals). The individuals were equipped with a satellite-linked time-depth recorder (Type3.10, Wildlife Computers) equipped with an Argos tag and placed on the back of the neck. For most individuals, satellite tracking began in September and continued until the following spring. The dataset consists of series of geographic locations of ten harbor seals with associated dates and times and movement speeds calculated from successive locations. The location data were only filtered based on the validity class provided by Argos. Class Z locations were excluded.