Topic
 

biota

1093 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 1093
  • Categories  

    Náttúrulegt birkilendi á Íslandi er kortlagning yfir alla náttúrulega birkiskóga og birkikjarr á Íslandi. Helstu upplýsingar eru hæð, þekja og aldur. Skilið er á milli núverandi hæðar og aldur fullvaxta birkis. Það er gert samkvæmt alþjóðlegum skilgreiningum um hæð trjágróðurs þar sem miðað er við hæð fullvaxta skógar. Birki var fyrst kortlagt á árunum 1972-1975 og var unnin leiðrétting á gögnunum og gerðar frekari greiningar á árunum 1987-1991. Gögnin voru því komin nokkuð til ára sinna þegar ákveðið var að hefja endurkortlagningu á öllu náttúrulegu birki á Íslandi. Fór sú vinna fram á árunum 2010-2014 og er núverandi þekja því afrakstur þeirrar vinnu. Flatarmál náttúrulegs birkis á Íslandi er 150.600 ha. Frá árinu 1987 hefur flatarmál birkis með sjálfsáningu aukist um 9% og nemur 13.000 ha. Gögnin voru upphaflega hugsuð fyrir mælikvarða 1:15.000, hins vegar var talsvert stór hluti landsins kortlagður í mælikvarða 1:5000 – 1:10.000.

  • Categories  

    Atlantic salmon postsmolts were surveyed via surface trawling during 2001 and 2003. These data were provided to the Coastal Oceanography and Ecosystem Research section of Fisheries and Oceans Canada. These data, and information from subsequent tagging studies were considered to estimate the likelihood of presence of Atlantic salmon within the Area Response Plan regions. Atlantic salmon presence varies seasonally and this spatial information should be used in conjunction with the temporal information in the attribute table. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Atlantic Salmon in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/436cdf90-9d6b-4784-938b-feec48844a67

  • Categories  

    The National Ecological Framework for Canada's "Surficial Geology by Ecozone” dataset contains tables that provide surficial geology information with the ecozone framework polygons. It provides codes that characterize surficial geology (unconsolidated geologic materials) and their English and French-language descriptions as well as information about the area and percentage of the polygon that the material occupies.

  • Categories  

    Tow, catch, and length frequency for fish caught during the August sentinel surveys in the southern Gulf of St. Lawrence (NAFO Division 4T). Abundance indices and spatial distribution patterns of commercial groundfish. Note: Due to delays caused by logistic complexities and Covid the project did not take place in 2020

  • Categories  

    A derivative of DFO’s benthic species survey for the Strategic Program for Ecosystem-based Research and Advice (SPERA) (open data record ID: e736c0f0-b19e-4842-903d-28bfc756d48a), this benthic survey funded through the Canadian Healthy Oceans Network (CHONeII) looks at the presence/absence and abundance of two biogenic habitat-forming species that are listed as vulnerable to disturbance in a subset of 50 drift camera transects in the ‘Head Harbour/West Isles Archipelago/The Passages’ Ecologically and Biologically Significant Area (EBSA) in the Bay of Fundy, New Brunswick, Canada (~113km2). Presence/absence and abundance data of the stalked sea squirt (Boltenia ovifera) and horse mussel (Modiolus modiolus) were derived from the use of high-resolution Nikon D800 36.1 megapixel still images (n=2576, see link to parent record for more descriptive survey information) to be used in species distribution modelling. Image field of view (FOV) was estimated using a 10 cm-wide trigger weight for scale,and standardized across images using the average FOV estimate (0.75 x 0.5 m) across a subset of 200 images. Species counts were then converted to abundance estimates (number of individuals per square-meter) by dividing counts by 0.375m2. Boltenia ovifera was observed at densities reaching 456 ind./m2, while Modiolus modiolus density reached a maximum of 240 ind./m2. Cite this data as: Mireault C.A., Lawton P., Devillers R. and Teed L. Presence/absence and abundance of vulnerable marine ecosystem species Boltenia ovifera and Modiolus modiolus in the lower Bay of Fundy derived from high resolution still imagery. Published September 2023. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/152ae3f1-d2b9-43d9-a7b4-d769d9e9fc41

  • Categories  

    Bluefin tuna landings are reported to the Department of Fisheries and Oceans and stored in the Maritime Fishery Information System Database. This database was queried in January 2016 for all reported landings of Bluefin tuna in coastal Nova Scotia. Longline data was excluded due to location uncertainties associated with the gear. Bluefin tuna sightings are also reported opportunistically to the DFO Whale Sightings Database. The Coastal Oceanography and Ecosystem Research section considered these landings and sightings to estimate the presence of Bluefin tuna within the Area Response Plan areas. Bluefin tuna presence varies seasonally and this spatial information should be used in conjunction with temporal information. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Bluefin Tuna in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/0c3b25df-f831-43e8-a8ac-336e1467c4fe

  • Categories  

    The National Ecological Framework for Canada's "Land Cover by Ecodistrict” dataset provides land cover information within the ecodistrict framework polygon. It provides landcover codes and their English and French language description as well as information about the percentage of the polygon that the component occupies.

  • Categories  

    The National Ecological Framework for Canada's "Surface Material by Ecozone” dataset provides surface material information within the ecozone framework polygon. It provides surface material codes and their English and French language descriptions as well as information about the percentage of the polygon that the component occupies. Surface material includes the abiotic material at the earth's surface. The materials can be: ICE and SNOW - Glacial ice and permanent snow ORGANIC SOIL - Contains more than 30% organic matter as measured by weight ROCK - Rock undifferentiated MINERAL SOIL - Predominantly mineral particles: contains less than 30% organic matter as measured by weight URBAN - Urban areas. Note that only a few major urban area polygons are included on SLC source maps, therefore, do not use for tabulating total urban coverage

  • Categories  

    The National Ecological Framework for Canada's "Surficial Geology by Ecoregion” dataset contains tables that provide surficial geology information with the ecoregion framework polygons. It provides codes that characterize surficial geology (unconsolidated geologic materials) and their English and French-language descriptions as well as information about the area and percentage of the polygon that the material occupies.

  • Categories  

    The European Green Crab (EGC) is a high-risk global invader that can devastate coastal marine ecosystems by displacing native species, degrading and disturbing native habitats (including eelgrass), and altering food webs. EGC has recently been detected in the Canadian portion of the Salish Sea. As EGC continue to establish in the region, identifying locations on which to focus limited monitoring resources is an ongoing problem given the vast amount of coastal habitat that could be occupied by the species. A variety of methods can be used to identify highly suitable habitats for EGC at a range of spatial scales. However, none have been evaluated in the context of informing EGC management, nor for the Canadian portion of the Salish Sea. Here we evaluate five individual methods developed to assess habitat suitability for EGC (i.e., MaxEnt, stochastic gradient boosted linear and logistic regression models, a rapid site selection tool, and a qualitative site assessment and ranking tool) and five derived models generated by multiplying the outputs of these individual models. Each model relied on slightly different environmental and habitat input variables affecting EGC invasion success. Thus, rather than identifying a single preferred model, we used a multi-model ensemble approach to identify sites that are expected to be most suitable for the species. The ensemble approach likely increases predictive power by including both environmental and habitat characteristics when identifying priority sites for early detection/monitoring for EGC in the Canadian waters of the Salish Sea. Finally, we describe how the models evaluated here, alone or in combination, could be used to identify additional sites either within the Salish Sea or into new areas. This dataset contains predicted habitat suitability from five models for European Green Crab at beaches in the Salish Sea (British Columbia, Pacific Region).