biota
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Náttúrulegt birkilendi á Íslandi er kortlagning yfir alla náttúrulega birkiskóga og birkikjarr á Íslandi. Helstu upplýsingar eru hæð, þekja og aldur. Skilið er á milli núverandi hæðar og aldur fullvaxta birkis. Það er gert samkvæmt alþjóðlegum skilgreiningum um hæð trjágróðurs þar sem miðað er við hæð fullvaxta skógar. Birki var fyrst kortlagt á árunum 1972-1975 og var unnin leiðrétting á gögnunum og gerðar frekari greiningar á árunum 1987-1991. Gögnin voru því komin nokkuð til ára sinna þegar ákveðið var að hefja endurkortlagningu á öllu náttúrulegu birki á Íslandi. Fór sú vinna fram á árunum 2010-2014 og er núverandi þekja því afrakstur þeirrar vinnu. Flatarmál náttúrulegs birkis á Íslandi er 150.600 ha. Frá árinu 1987 hefur flatarmál birkis með sjálfsáningu aukist um 9% og nemur 13.000 ha. Gögnin voru upphaflega hugsuð fyrir mælikvarða 1:15.000, hins vegar var talsvert stór hluti landsins kortlagður í mælikvarða 1:5000 – 1:10.000.
-
Atlantic salmon postsmolts were surveyed via surface trawling during 2001 and 2003. These data were provided to the Coastal Oceanography and Ecosystem Research section of Fisheries and Oceans Canada. These data, and information from subsequent tagging studies were considered to estimate the likelihood of presence of Atlantic salmon within the Area Response Plan regions. Atlantic salmon presence varies seasonally and this spatial information should be used in conjunction with the temporal information in the attribute table. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Atlantic Salmon in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/436cdf90-9d6b-4784-938b-feec48844a67
-
The Okanagan Lake kokanee shore spawner data set is comprised of two combined data sets. The historical data set for the years 1974, 77, 78, 79 and 80 and a more recent data set collected from 2001 to 2009. The historical data was derived from information collected in the field and hand drawn onto air photographs. Ministry staff circled Okanagan Lake in a boat one time each year and recorded fish numbers and spawner locations onto air photographs that were digitized in 2006 to make up the historical data set. This data set may not capture the peak reach count for these years. The data collected from 2001 to 2009 was derived from boat counts undertaken along the shoreline of Okanagan, Wood and Kalamalka Lakes. A GPS was used to record shore spawner locations and numbers. Multiple counts were undertaken over the entire spawning cycle and covered the peak spawning period for each year of data provided. The data collected for Christina Lake began in 2003 and ended in 2006. Christina Lake kokanee spawn at night in late December and early January. Kokanee spawning redd locations are available for the 2003/2004 count. Kokanee enumerations were undertaken at night for the 2004/2005 and 2005/2006 seasons and spawning redds were counted at the end of spawning cycle. For these two years there is both spawning and redd count data available
-
Boundary of Rose Swanson sensitive area within the Vernon Forest District
-
The location of safe anchorages in coastal British Columbia. The Coastal BC datasets are circa 2004 and legacy in nature. Caution should be exercised when using this data, as it may not be accurate or complete. There are currently no plans to update.
-
Mobile Core Bathurst Caribou Management Zone
-
A derivative of DFO’s benthic species survey for the Strategic Program for Ecosystem-based Research and Advice (SPERA) (open data record ID: e736c0f0-b19e-4842-903d-28bfc756d48a), this benthic survey funded through the Canadian Healthy Oceans Network (CHONeII) looks at the presence/absence and abundance of two biogenic habitat-forming species that are listed as vulnerable to disturbance in a subset of 50 drift camera transects in the ‘Head Harbour/West Isles Archipelago/The Passages’ Ecologically and Biologically Significant Area (EBSA) in the Bay of Fundy, New Brunswick, Canada (~113km2). Presence/absence and abundance data of the stalked sea squirt (Boltenia ovifera) and horse mussel (Modiolus modiolus) were derived from the use of high-resolution Nikon D800 36.1 megapixel still images (n=2576, see link to parent record for more descriptive survey information) to be used in species distribution modelling. Image field of view (FOV) was estimated using a 10 cm-wide trigger weight for scale,and standardized across images using the average FOV estimate (0.75 x 0.5 m) across a subset of 200 images. Species counts were then converted to abundance estimates (number of individuals per square-meter) by dividing counts by 0.375m2. Boltenia ovifera was observed at densities reaching 456 ind./m2, while Modiolus modiolus density reached a maximum of 240 ind./m2. Cite this data as: Mireault C.A., Lawton P., Devillers R. and Teed L. Presence/absence and abundance of vulnerable marine ecosystem species Boltenia ovifera and Modiolus modiolus in the lower Bay of Fundy derived from high resolution still imagery. Published September 2023. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/152ae3f1-d2b9-43d9-a7b4-d769d9e9fc41
-
The dataset contains approved legal boundaries for fisheries sensitive watersheds. A FSW is a mapped area with specific management objectives intended to guide development activities which may adversely impact important fish values
-
The Boreal Caribou data Package includes layers that are used for Boreal Caribou Range Planning in the NWT. This includes fire history, human disturbance, range planning regions as well as the 2020 Resource Selection Function layers for all seasons. Data sources and contact information can be found within each layer's metadata.
-
Description Conservation of marine biodiversity requires understanding the joint influence of ongoing environmental change and fishing pressure. Addressing this challenge requires robust biodiversity monitoring and analyses that jointly account for potential drivers of change. Here, we ask how demersal fish biodiversity in Canadian Pacific waters has changed since 2003 and assess the degree to which these changes can be explained by environmental change and commercial fishing. Using a spatiotemporal multispecies model based on fisheries independent data, we find that species density (number of species per area) and community biomass have increased during this period. Environmental changes during this period were associated with temporal fluctuations in the biomass of species and the community as a whole. However, environmental changes were less associated with changes in species’ occurrence. Thus, the estimated increases in species density are not likely to be due to environmental change. Instead, our results are consistent with an ongoing recovery of the demersal fish community from a reduction in commercial fishing intensity from historical levels. These findings provide key insight into the drivers of biodiversity change that can inform ecosystem-based management. The layers provided represent three community metrics: 1) species density (i.e., species richness), 2) Hill-Shannon diversity, and 3) community biomass. All layers are provided at a 3 km resolution across the study domain for the period of 2003 to 2019. For each metric, we provide layers for three summary statistics: 1) the mean value in each grid cell over the temporal range, 2) the probability that the grid cell is a hotspot for that metric, and 3) the temporal coefficient of variation (i.e., standard deviation/mean) across all years. Methods: The analysis that produced these layers is presented in Thompson et al. (2022). The analysis uses data from the Groundfish Synoptic Bottom Trawl Research surveys in Queen Charlotte Sound (QCS), Hecate Strait (HS), West Coast Vancouver Island (WCVI), and West Coast Haida Gwaii (WCHG) from 2003 to 2019. Cartilaginous and bony fish species caught in DFO groundfish surveys that were present in at least 15% of all trawls over the depth range in which they were caught were included. This depth range was defined as that which included 95% of all trawls in which that species was present. The final dataset used in our analysis consisted of 57 species (Table S1 in Thompson et al. 2022). The spatiotemporal dynamics of the demersal fish community were modeled using the Hierarchical Modeling of Species Communities (HMSC) framework and package (Tikhonov et al. 2021) in R. This framework uses Bayesian inference to fit a multivariate hierarchical generalized mixed model. We modeled community dynamics using a hurdle model, which consists of two sub models: a presence-absence model and a biomass model that is conditional on presence. Our list of environmental covariates included bottom depth, bathymetric position index (BPI), mean summer tidal speed, substrate muddiness, substrate rockiness, whether the trawl was inside or outside of the ecosystem-based trawling footprint, and survey region (QCS & HS vs. WCVI & WCHG)), mean summer near-bottom temperature deviation, mean summer near-bottom dissolved oxygen deviation, mean summer cross-shore and along-shore current velocities near the seafloor, mean summer depth-integrated primary production, and local-scale commercial fishing effort. Layers are provided for three community metrics. All metrics should be interpreted as the value that would be expected in the catch from an average tow in the Groundfish Synoptic Bottom Trawl Research Surveys taken in a given 3 km grid cell. Species density (sometimes called species richness) should be interpreted as the number of the 57 species that would be caught in a trawl. Hill-Shannon diversity is a measure of diversity that gives greater weight to communities where biomass is spread equally across species. Community biomass is the total biomass across all 57 species that would be expected to be caught per square km in an average tow. Data Sources: Research data was provided by Pacific Science's Groundfish Data Unit for research surveys from the GFBio database between 2003 and 2019 that occurred in four regions: Queen Charlotte Sound, Hecate Strait, West Coast Haida Gwaii, and West Coast Vancouver Island. Our analysis excludes species that are rarely caught in the research trawls and so our estimates would not include the occurrence or biomass of these rare species. Commercial fishing data was accessed through a DFO R script detailed here: https://github.com/pbsassess/gfdata. Local scale commercial fishing effort was calculated from this data. The substrate layers were obtained from a substrate model (Gregr et al. 2021). The oceanographic layers (bottom temperature, dissolved oxygen, tidal and circulation speeds, primary production) were obtained from a hindcast simulation of the British Columbia continental margin (BCCM) model (Peña et al. 2019). Uncertainties: Species that are not well sampled by the trawl surveys may not be accurately estimated by our model. The model did not include spatiotemporal random effects, which likely underestimates spatiotemporal variability in the region. It is also important to underline covariate uncertainty and model uncertainty. The hotspot estimates provide one measure of model uncertainty/certainty.
Arctic SDI catalogue