biota
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Náttúrulegt birkilendi á Íslandi er kortlagning yfir alla náttúrulega birkiskóga og birkikjarr á Íslandi. Helstu upplýsingar eru hæð, þekja og aldur. Skilið er á milli núverandi hæðar og aldur fullvaxta birkis. Það er gert samkvæmt alþjóðlegum skilgreiningum um hæð trjágróðurs þar sem miðað er við hæð fullvaxta skógar. Birki var fyrst kortlagt á árunum 1972-1975 og var unnin leiðrétting á gögnunum og gerðar frekari greiningar á árunum 1987-1991. Gögnin voru því komin nokkuð til ára sinna þegar ákveðið var að hefja endurkortlagningu á öllu náttúrulegu birki á Íslandi. Fór sú vinna fram á árunum 2010-2014 og er núverandi þekja því afrakstur þeirrar vinnu. Flatarmál náttúrulegs birkis á Íslandi er 150.600 ha. Frá árinu 1987 hefur flatarmál birkis með sjálfsáningu aukist um 9% og nemur 13.000 ha. Gögnin voru upphaflega hugsuð fyrir mælikvarða 1:15.000, hins vegar var talsvert stór hluti landsins kortlagður í mælikvarða 1:5000 – 1:10.000.
-
Likelihood of Presence of Harbour Seal in the Bay of Fundy and Port Hawkesbury Area Response Plan. The Coastal Oceanography and Ecosystem Research section (DFO Science) reviewed science sources and local knowledge sources to estimate where Harbour seals are seasonally present and delineate these areas. As of March 2017, this dataset delineates the presence of Harbour seals in the Bay of Fundy and Port Hawkesbury areas of Nova Scotia designated within the Area Response Planning (ARP), identified under the World Class Tanker Safety System (WCTSS) initiative, based on the Transport Canada Response Organizations Standards. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Harbour Seal in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/5bbc1575-4267-44fa-ae35-ee08cc2af8fb
-
PURPOSE: These data have been updated following a Canadian Science Advice Secretariat (CSAS) Regional Science Advisory Process. Associated publications are available in the citation section below or will be posted on the Fisheries and Oceans Canada (DFO) Science Advisory Schedule as they become available. DESCRIPTION: Atlantic herring NAFO 4T biomass estimates for both spring and fall stock components. Values are provided in kilotons (kt) alongside with confidence intervals 50% (spring) and 95% (spring and fall). USE LIMITATION: To ensure scientific integrity and appropriate use of the data, we would encourage you to contact the data custodian.
-
The National Ecological Framework for Canada's "Soil Texture by Ecozone” dataset contains tables that provide soil texture information within the ecozone framework polygon. It provides soil texture codes and their English and French language descriptions as well as the percentage of the polygon that the component occupies. Soil texture indicates the relative proportions of the various soil separates (sand, silt, clay) as described by classes of texture. Soil separates are mineral particles, 2.0 mm in diameter and include: gravel 0.2 -7.5 cm and cobbles 7.5-25.0 cm. There are 12 texture group classes definitions and one class definition for Not Applicable (which indicates, for example, water, ice or urban areas).
-
Zooplankton samples were collected at Ocean Station "P" (50.0000, -145.0000) from 1956 to 1980, and were analyzed to various levels of taxonomic resolution over the years. Although summaries of these data have been previously published ((LeBrasseur 1965) and (Fulton 1978, 1983)) the detailed species data have never been published. This detailed dataset contains total zooplankton wet weights/m3 for the whole period of 1956 to 1980, as well as densities (numbers/m3) for five major taxa (copepods, chaetognaths, euphausiids, amphipods, and Aglantha) from 1964 to 1967, species identifications, counts and lengths for many samples collected between 1968 to 1980. The attached supporting document (Ocean Station "Papa" detailed zooplankton data: 1956 – 1980) contains information on the methods used to collect and process the data along with descriptions of a number of fairly minor points about the data that were not resolved. It also describes, in detail, the format of the original data files, the corrections/changes that were made to these files in creating this version, and how these errors affect what was published in Fulton (1983). The purpose of this record is to make the detailed data available to the scientific community in an electronic format and to provide a convenient reference for citing the detailed data. Waddell, Brenda J., and Skip McKinnell. 1995. Ocean Station "Papa" detailed zooplankton data: 1956 - 1980. Can. Tech. Rep. Fish. Aquat. Sci. 2056: 21 p.
-
This layer details Important Areas (IAs) relevant to key seabird species in the West Coast Vancouver Island (WCVI) ecoregion. This data was mapped to inform the selection of marine Ecologically and Biologically Significant Areas (EBSA). Experts have indicated that these areas are relevant based upon their high ranking in one or more of three criteria (Uniqueness, Aggregation, and Fitness Consequences). Canada’s Oceans Act provides the legislative framework for an integrated ecosystem approach to management in Canadian oceans, particularly in areas considered ecologically or biologically significant. DFO has developed general guidance for the identification of ecologically or biologically significant areas. The criteria for defining such areas include uniqueness, aggregation, fitness consequences, resilience, and naturalness. This science advisory process identifies proposed EBSAs in Canadian Pacific marine waters, specifically in the Strait of Georgia (SOG), along the west coast of Vancouver Island (WCVI, southern shelf ecoregion), and in the Pacific North Coast Integrated Management Area (PNCIMA, northern shelf ecoregion). Initial assessment of IA's in PNCIMA was carried out in September 2004 to March 2005 with spatial data collection coordinated by Cathryn Clarke. Subsequent efforts in WCVI and SOG were conducted in 2009, and may have used different scientific advisors, temporal extents, data, and assessment methods. WCVI and SOG IA assessment in some cases revisits data collected for PNCIMA, but should be treated as a separate effort. Though data collection is considered complete, the emergence of significant new data may merit revisiting of IA's on a case by case basis. Other datasets in this series detail IAs for cetaceans, coral and sponges, fish, geographic features, invertebrates, and other vertebrates. This package also includes project documentation and tech reports relevant to the IA process and its role within the selection of EBSAs.
-
The National Ecological Framework for Canada's "Total Land and Water Area by Ecodistrict” dataset provides land and water area values for ecodistrict framework polygons, in hectares. It includes attributes for a polygon’s total area, land-only area and large water body area.
-
Survey areas is a polygon feature class containing mudflats and staging areas observed for shorebirds.
-
The National Ecological Framework for Canada's "Soil Development by Ecoprovince” dataset contains tables that provide soil development information for components within the ecoprovince framework polygon. It provides soil development codes and their English and French-language descriptions as well as the percentage of the polygon that the component occupies. The soil development descriptions are based on the second edition of the Canadian System of Soil Classification (Agriculture Canada Expert Committee on Soil Survey, 1987).
-
This spatial file includes the polygon boundaries of the four Pacific Great Blue Heron Conservation Regions in British Columbia, as described in the management plan. These Conservation Regions are recognized based on degree of isolation, population sizes, and differences in trends and threats. The management objective for Pacific Great Blue Heron is to ensure that all four Conservation Regions have stable or locally increasing numbers of herons. Refer to the "Management Plan for the Great Blue Heron fannini subspecies (Ardea herodias fannini) in Canada" on the SARA Regristry for more information.
Arctic SDI catalogue