RI_542
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The AAFC Infrastructure Flood Mapping in Saskatchewan - Contours - 50 centimetre is the LiDAR contours with an interval of 0.5m of the capture area of Saskatchewan. The contours were modeled from the ground class at a maximum vertical distance of 0.5m and a horizontal distance of 20 m. Breaklines were not used around water features therefore a uniform height of water bodies is not necessarily present if overlapping data was collected on different days. Major contours were defined every 5m and minor contours every 0.5 m
-
Bay Scale Assessment of Nearshore Habitat Bras dOr Lake - Malagawash 2007 2008 data is part of the publication Bay Scale Assessment of Nearshore Habitat Bras d'Or Lakes. A history of nearshore benthic surveys of Bras d’Or Lake from 2005 – 2011 is presented. Early work utilized drop camera and fixed mount sidescan. The next phase was one of towfish development, where camera and sidescan were placed on one platform with transponder-based positioning. From 2009 to 2011 the new towfish was used to ground truth an echosounder. The surveys were performed primarily in the northern half of the lake; from 10 m depth right into the shallows at less than 1 m. Different shorelines could be distinguished from others based upon the relative proportions of substrate types and macrophyte canopy. The vast majority of macrophytes occurred within the first 3 m of depth. This zone was dominated by a thin but consistent cover of eelgrass (Zostera marina L.) on almost all shores with a current or wave regime conducive to the growth of this plant. However, the eelgrass beds were frequently in poor shape and the negative impacts of commonly occurring water column turbidity, siltation, or possible localized eutrophication, are suspected. All survey data were placed into a Geographic Information System, and this document is a guide to that package. The Geographic Information System could be used to answer management questions such as the placement and character of habitat compensation projects, the selection of nearshore protected areas or as a baseline to determine long term changes. Vandermeulen, H. 2016. Video-sidescan and echosounder surveys of nearshore Bras d’Or Lake. Can. Tech. Rep. Fish. Aquat. Sci. 3183: viii + 39 p. Cite this data as: Vandermeulen H. Bay Scale Assessment of Nearshore Habitat Bras d'Or Lake - Malagawash 2007 - 2008. Published May 2022. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S.
-
A history of nearshore benthic surveys of Bras d’Or Lake from 2005 – 2011 is presented. Early work utilized drop camera and fixed mount sidescan. The next phase was one of towfish development, where camera and sidescan were placed on one platform with transponder-based positioning. From 2009 to 2011 the new towfish was used to ground truth an echosounder. The surveys were performed primarily in the northern half of the lake; from 10 m depth right into the shallows at less than 1 m. Different shorelines could be distinguished from others based upon the relative proportions of substrate types and macrophyte canopy. The vast majority of macrophytes occurred within the first 3 m of depth. This zone was dominated by a thin but consistent cover of eelgrass (Zostera marina L.) on almost all shores with a current or wave regime conducive to the growth of this plant. However, the eelgrass beds were frequently in poor shape and the negative impacts of commonly occurring water column turbidity, siltation, or possible localized eutrophication, are suspected. All survey data were placed into a Geographic Information System, and this document is a guide to that package. The Geographic Information System could be used to answer management questions such as the placement and character of habitat compensation projects, the selection of nearshore protected areas or as a baseline to determine long term changes. Vandermeulen, H. 2016. Video-sidescan and echosounder surveys of nearshore Bras d’Or Lake. Can. Tech. Rep. Fish. Aquat. Sci. 3183: viii + 39 p. Cite this data as: Vandermeulen H. Bay Scale Assessment of Nearshore Habitat Bras d'Or Lake. Published May 2022. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S.
-
Bay Scale Assessment of Habitat in Bras d'Or Lake - River Denys 2005 - 2009 data is part of the publication Bay Scale Assessment of Nearshore Habitat Bras d'Or Lakes. A history of nearshore benthic surveys of Bras d’Or Lake from 2005 – 2011 is presented. Early work utilized drop camera and fixed mount sidescan. The next phase was one of towfish development, where camera and sidescan were placed on one platform with transponder-based positioning. From 2009 to 2011 the new towfish was used to ground truth an echosounder. The surveys were performed primarily in the northern half of the lake; from 10 m depth right into the shallows at less than 1 m. Different shorelines could be distinguished from others based upon the relative proportions of substrate types and macrophyte canopy. The vast majority of macrophytes occurred within the first 3 m of depth. This zone was dominated by a thin but consistent cover of eelgrass (Zostera marina L.) on almost all shores with a current or wave regime conducive to the growth of this plant. However, the eelgrass beds were frequently in poor shape and the negative impacts of commonly occurring water column turbidity, siltation, or possible localized eutrophication, are suspected. All survey data were placed into a Geographic Information System, and this document is a guide to that package. The Geographic Information System could be used to answer management questions such as the placement and character of habitat compensation projects, the selection of nearshore protected areas or as a baseline to determine long term changes. Vandermeulen, H. 2016. Video-sidescan and echosounder surveys of nearshore Bras d’Or Lake. Can. Tech. Rep. Fish. Aquat. Sci. 3183: viii + 39 p. Cite this data as: Vandermeulen H. Bay Scale Assessment of Nearshore Habitat Bras d'Or Lake - River Denys 2005 - 2009. Published May 2022. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S.
-
In 2018 and 2019 Fisheries and Oceans Canada conducted a project to relocate American Eel (Anguilla rostrata) from Port Dalhousie Harbour to mitigate potential impacts of in-water construction prior to and during an essential harbour revitalization project. American Eel are designated as Endangered under the Province of Ontario’s Endangered Species Act and were confirmed to be present in the area during initial sampling efforts of this project. While a combination of passive eel traps and boat electrofishing were used to capture eels, this dataset includes passive capture data only. A total of four eels were captured using eel traps and all individuals were relocated to Hamilton Harbour. Only two of the four eels captured were large enough to be tagged with acoustic transmitters, both of which eventually returned to Port Dalhousie from Hamilton Harbour. All other fish species captured in the traps were identified, counted and released at Port Dalhousie.
-
Point layer of municipal libraries in the City of Shawinigan. ! [Shawinigan logo] (https://jmap.shawinigan.ca/doc/photos/LogoShawinigan.jpg) **Collection method** Location on the corresponding building Name given by the Communications Department **Attributes** * `objectid` (`integer`): * `name` (`char`): Name * `address` (`char`): Address * `url` (`char`): URL For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
Northern Marine Coastal and Ecosystem Studies in the Canadian Beaufort Sea- sediment stable isotopes
This record contains results from stable isotope analysis of sediment samples including δ 13C (‰), δ 15N (‰), total N and total C collected in the Beaufort Sea.
-
LiDAR Services International (LSI), a Calgary-based LiDAR company completed an airborne LiDAR survey for the Redberry Lake Biosphere Reserve (RLBR) and Agriculture and Agri-Foods Canada (AAFC) in October 2011. The project involved collection of LiDAR data for a 362.97 km2 block area, 252.77 km2 for Redberry Lake and 110.20 km2 for AAFC northwest of Saskatoon, SK. Deliverables included: • 1 m bare earth and full feature grids in 1 km x 1 km tiles (ASCII XYZ format) • 1 m bare earth and full feature greyscale hillshades (GeoGeoTIF format) • Classified LiDAR point clouds and ASCII extractor program (LAS v1.2 format)
-
This collection is a legacy product that is no longer maintained. It may not meet current government standards. The correction matrices for the National Topographic Data Base (NTDB), also known under the acronym CORMAT, are products derived from the planimetric enhancement of NTDB data sets at the 1:50 000 scale. The correction matrix enables users to enhance the geometric accuracy of the less accurate NTDB. The matrix is a set of points arrayed on a regular 100-m grid. Each point describes the planimetric correction (DX, DY) to be applied at this location. The position of the points is given in UTM (Universal Transverse Mercator projection) coordinates based on the North American Datum of 1983 (NAD83) . Each file constitutes a rectangular area covering the entire corresponding NTDB data set. Its delimitation corresponds more or less to National Topographic System (NTS) divisions at the 1:50 000 scale. All NTDB data sets at the 1:50 000 scale whose original accuracy was less than 30 m can thus be geometrically corrected. A CORMAT data set contains a list of coordinates and the corresponding corrections to be applied in the form X Y DX DY. Related Products: [National Topographic Data Base (NTDB), 1944-2005](https://open.canada.ca/data/en/dataset/1f5c05ff-311f-4271-8d21-4c96c725c2af)
-
This map presents the history of the political boundaries in Canada, from Confederation in 1867 to 2017. Canada’s boundaries are dynamic political structures that reflect the changing political, economic, and cultural conditions of the country through time. Canada’s long and diversified settlement history is reflected in the two distinct patterns of boundaries that differentiate eastern and western Canada. In the east, the evolution of the Atlantic provinces’ boundaries are the outcome of 200 years of colonial competition for both land and resources. Similarly, Quebec and Ontario grew from frontier settlements to industrialized economies between 1760 and the early 1900s. As well, in the boundaries of eastern Canada closely conform to natural features such as drainage basins. In contrast, the boundaries of western and northern Canada reflect the administrative organization of these lands by, first, the Hudson’s Bay Company and, later, the Government of Canada. Here, geometric lines radiate northward from the 49th parallel, creating boundaries that often divide communities and regions into two different provincial jurisdictions. Each of the western provinces has a unique history and rationale for their boundaries. Manitoba evolved from the first Riel Rebellion as a "postage stamp" province, and only later achieved its present-day boundaries. Alberta and Saskatchewan earned provincial status with an eye to creating equal land areas. On the Pacific coast, the British colonies had to act quickly in response to the explosive gold mining frontier to organize and solidify their territorial claims to present-day British Columbia, and later to help establish the Yukon Territory in response to American encroachment. In the North, the boundaries of the existing Territories were redrawn in 1999 to create Nunavut. The boundaries of this new territory respect the traditional Aboriginal concept of territoriality. This online interactive map relies on the emerging "MapML" standard co-developed by Natural Resources Canada. The objective of this evolving standard is to make it simple for beginners and experts alike to create maps in Web pages that use open data and map services.
Arctic SDI catalogue