cl_maintenanceAndUpdateFrequency

RI_542

629 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 629
  • Categories  

    Natural areas abutting Lake Simcoe are areas of a continuous vegetation community class that have a minimum size of 1 ha and are wholly or partially within the 30 m buffer zone of the Lake Simcoe shoreline. These areas may be a narrow band of vegetation along the shoreline or larger areas, which extend a greater distance from the shoreline. As described in policy 6.31-SA, the MNR and the MOE will map the location of natural areas abutting Lake Simcoe.

  • Categories  

    The National Ecological Framework for Canada's "Surficial Geology by Ecozone” dataset contains tables that provide surficial geology information with the ecozone framework polygons. It provides codes that characterize surficial geology (unconsolidated geologic materials) and their English and French-language descriptions as well as information about the area and percentage of the polygon that the material occupies.

  • Categories  

    Railway network on the territory of the city. **Collection context** Historical data from the Government of Quebec. Additional data by photointerpretation. **Collection method** Computer-aided mapping. **Attributes** * `ID_VFR` (`integer`): Identifier * `SOURCE` (`varchar`): Source * `DATE_CREATION` (`smalldatetime`): Created on * `DATE_MODIFICATION` (`smalldatetime`): Modified on * `USER_MODIFICATION` (`varchar`): Modified by For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    Electoral division of the 2017 election. **Collection context** Creation of districts in collaboration with the legal services and the electoral data of the Director General of Elections (DGE). Balancing of districts according to anthropogenic constraints and number of voters. **Collection method** Computer-aided mapping. **Attributes** * `ID_SEC_DIS` (`long`): Identifier * `NAME_DISTRI` (`varchar`): District name * `NO` (`long`): District number * `AREA` (`varchar`): Area * `ADVISORY_NAME` (`varchar`): Name of the advisor * `SOURCE` (`varchar`): Source * `DATE_CREAT` (`date`): Creation date * `DATE_MODIF` (`date`): Date of modification * `USER_MODIF` (`varchar`): Modified by For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    Major assignment layer. **Collection context** Taken from the zoning by-law. **Collection method** Computer-aided mapping. **Attributes** * `ID_ASSIGNATION` (`integer`): Identifier * `ASSIGNMENT` (`varchar`): Assignment * `CODE_ASSIGNATION` (`varchar`): Assignment code * `ZON_AREA` (`numeric`): Area * `SECTOR` (`varchar`): Sector * `NOTE` (`varchar`): Note * `DATE_CREATION` (`smalldatetime`): Created on * `DATE_MODIFICATION` (`smalldatetime`): Modified on * `USER_MODIFICATION` (`varchar`): Modified by * `SOURCE` (`varchar`): Source For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    Polygonal layer of electoral districts for the 2025 election. New balancing of voters increases the number of districts from 11 to 10 for the 2025 election. **Collection context** Review committee to balance the districts according to the data of the Chief Electoral Officer. **Collection method** Analysis of voters by address using cartographic analysis software. Update by computer-aided mapping. **Attributes** * `ID_SEC_DISTRICT_ELEC` (`integer`): Identifier * `DISTRICT_NAME` (`varchar`): District name * `NO` (`integer`): Number * `AREA` (`varchar`): Area * `ADVISOR_NAME` (`varchar`): Recommended * `SOURCE` (`varchar`): Source * `DATE_CREATION` (`smalldatetime`): Created on * `DATE_MODIFICATION` (`smalldatetime`): Modified on * `USER_MODIFICATION` (`varchar`): Modified by For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    Buffer zone of 300 meters around the railways present on the territory of the city. Used in public safety analyses. **Collection context** Derived from the layer of railways in the territory of the city of Saint-Hyacinthe. **Collection method** Buffer zone of 300 meters. Spatial analysis. **Attributes** * `Id` (`long`): Identifier For more information, consult the metadata on the Isogeo catalog (OpenCatalog link).**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    In 2019, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8, Sentinel-2) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by: provincial crop insurance companies in Alberta, Saskatchewan, Manitoba, & Quebec; point observations from the PEI Department of Environment, Water and Climate Change and data collection supported by our regional AAFC Research and Development Centres in St. John’s, Kentville, Charlottetown, Fredericton, and Guelph.

  • Categories  

    Electromagnetic anomalies represent anomalies resulting from aerial geophysical surveys.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  • Categories  

    The Scotian Shelf population of northern bottlenose whales (Hyperoodon ampullatus) is listed as Endangered under Canada’s Species at Risk Act. Partial critical habitat was identified for this population in the Recovery Strategy first published in 2010 (Fisheries and Oceans Canada 2016), and three critical habitat areas were designated along the eastern Scotian Shelf, encompassing the Gully, Shortland Canyon, and Haldimand Canyon (shapefile available online: https://open.canada.ca/data/en/dataset/db177a8c-5d7d-49eb-8290-31e6a45d786c). However, the Recovery Strategy recognized that additional areas may constitute critical habitat for the population and recommended further studies based on acoustic and visual monitoring to assess the importance of inter-canyon areas as foraging habitat and transit corridors for northern bottlenose whales. In a subsequent study of the distribution, movements, and habitat use of northern bottlenose whales on the eastern Scotian Shelf (Stanistreet et al. in press), several sources of data were assessed and additional important habitat was identified in the inter-canyon areas located between the Gully, Shortland Canyon, and Haldimand Canyon (DFO 2020). A summary of the data inputs, analyses, and limitations is provided below. Year-round passive acoustic monitoring conducted with bottom-mounted recorders at two inter-canyon sites from 2012-2014 revealed the presence and foraging activity of northern bottlenose whales in these areas throughout much of the year, with a seasonal peak in acoustic detections during the spring. Detections from acoustic recordings collected during vessel-based surveys provided additional evidence of species occurrence in inter-canyon areas during the summer months. Photo-identification data collected in the Gully, Shortland, and Haldimand canyons between 2001 and 2017 were used to model the residency and movement patterns of northern bottlenose whales within and between the canyons, and demonstrated that individuals regularly moved between the three canyons as well as to and from outside areas. Together, these results indicated a strong degree of connectivity between the Gully, Shortland, and Haldimand canyons, and provided evidence that the inter-canyon areas function as important foraging habitat and movement corridors for Scotian Shelf northern bottlenose whales. The inter-canyon habitat area polygon was delineated using the 500 m depth contour and straight lines connecting the southeast corners of the existing critical habitat areas, but these boundaries are based on limited spatial information on the presence of northern bottlenose whales in deeper waters. More data are needed to determine whether this area fully encompasses important inter-canyon habitat, particularly in regard to the deeper southeastern boundary. Similarly, the full extent of important habitat for Scotian Shelf northern bottlenose whales remains unknown, and potential critical habitat areas outside the canyons and inter-canyon areas on the eastern Scotian Shelf have not been fully assessed. See DFO (2020) for further information. References: DFO. 2020. Assessment of the Distribution, Movements, and Habitat Use of Northern Bottlenose Whales on the Scotian Shelf to Support the Identification of Important Habitat. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/008. https://www.dfo-mpo.gc.ca/csas-sccs/Publications/SAR-AS/2020/2020_008-eng.html Fisheries and Oceans Canada. 2016. Recovery Strategy for the Northern Bottlenose Whale, (Hyperoodan ampullatus), Scotian Shelf population, in Atlantic Canadian Waters [Final]. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. vii + 70 pp. https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/recovery-strategies/northern-bottlenose-whale-scotian-shelf.html Stanistreet, J.E., Feyrer, L.J., and Moors-Murphy, H.B. In press. Distribution, movements, and habitat use of northern bottlenose whales (Hyperoodon ampullatus) on the Scotian Shelf. DFO Can. Sci. Advis. Sec. Res. Doc. [https://publications.gc.ca/collections/collection_2022/mpo-dfo/fs70-5/Fs70-5-2021-074-eng.pdf] Cite this data as: Stanistreet, J.E., Feyrer, L.J., and Moors-Murphy, H.B. Data of: Northern bottlenose whale important habitat in inter-canyon areas on the eastern Scotian Shelf. Published: June 2021. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/9fd7d004-970c-11eb-a2f3-1860247f53e3