From 1 - 10 / 127
  • Categories  

    The Evaporative Stress Index (ESI) describes temporal anomalies in evapotranspiration (ET), highlighting areas with anomalously high or low rates of water use across the land surface. Here, ET is retrieved via energy balance using remotely sensed land-surface temperature (LST) time-change signals. LST is a fast- response variable, providing proxy information regarding rapidly evolving surface soil moisture and crop stress conditions at relatively high spatial resolution. The ESI also demonstrates capability for capturing early signals of "flash drought", brought on by extended periods of hot, dry and windy conditions leading to rapid soil moisture depletion. ESI values quantify standardized anomalies (σvalues) in the ratio of clear-sky actual-to-potential ET (fPET), derived using thermal infrared (TIR) satellite imagery from geostationary platforms. To capture a range in timescales, fPET composites are developed for 1, 2 and 3 month moving windows, advancing at 7-day intervals. Standardized anomalies are then computed with respect to normal conditions (mean and standard deviation) for each compositing interval assessed over a period of record from 2000-2015. For more information, visit: http://open.canada.ca/data/en/dataset/679f676a-330a-456f-9928-a4fafc95f9f8

  • Categories  

    The Evaporative Stress Index (ESI) describes temporal anomalies in evapotranspiration (ET), highlighting areas with anomalously high or low rates of water use across the land surface. Here, ET is retrieved via energy balance using remotely sensed land-surface temperature (LST) time-change signals. LST is a fast- response variable, providing proxy information regarding rapidly evolving surface soil moisture and crop stress conditions at relatively high spatial resolution. The ESI also demonstrates capability for capturing early signals of "flash drought", brought on by extended periods of hot, dry and windy conditions leading to rapid soil moisture depletion. ESI values quantify standardized anomalies (σvalues) in the ratio of clear-sky actual-to-potential ET (fPET), derived using thermal infrared (TIR) satellite imagery from geostationary platforms. To capture a range in timescales, fPET composites are developed for 1, 2 and 3 month moving windows, advancing at 7-day intervals. Standardized anomalies are then computed with respect to normal conditions (mean and standard deviation) for each compositing interval assessed over a period of record from 2000-2015. For more information, visit: http://open.canada.ca/data/en/dataset/679f676a-330a-456f-9928-a4fafc95f9f8

  • Categories  

    These agricultural capability / Limitation maps can be used at the regional level for making decisions on land improvement and farm consolidation, for developing landuse plans, and for preparing equitable land assessments. For more information, visit: http://open.canada.ca/data/en/dataset/0c113e2c-e20e-4b64-be6f-496b1be834ee

  • Categories  

    The Agriculture and Agri-Food Canada's LiDAR Projects dataset was created from existing spatial data. It contains the footprints (outlines) of all the LiDAR data that is openly distributed by Agriculture and Agri-Food Canada. LiDAR (Light Detection And Ranging) is a method of acquiring survey points using optical remote sensing technology. The dataset indicates basic information about the location, source and properties of the data. For more information, visit: http://open.canada.ca/data/en/dataset/a760f9e0-7013-4187-9261-2e69b01edd9a

  • Categories  

    The Grain Elevators in Canada dataset maps the list of grain elevators in Canada as provided by the Canadian Grain Commission (CGC). The elevators have been located as much as possible to an actual location rather than generalizing to the station name centroid. Additionally car spot information from CN, CP and the grain companies has been added where this has been published. This dataset attempts to provide a temporal and geographical extent of the grain elevators in Canada. For more information, visit: www.agr.gc.ca/atlas/metadata/5e0b5778-80cd-4697-8b84-23b4a814c1ae

  • Categories  

    These agricultural capability / Limitation maps can be used at the regional level for making decisions on land improvement and farm consolidation, for developing landuse plans, and for preparing equitable land assessments. For more information, visit: http://open.canada.ca/data/en/dataset/0c113e2c-e20e-4b64-be6f-496b1be834ee

  • Categories  

    In the "Weekly Best-Quality Maximum-NDVI anomalies" dataset series, each pixel value corresponds to the difference (anomaly) between the mean n-year "Best-Quality" Max-NDVI of the week specified (e.g. Week 18, 2000-2014) and the "Best-Quality" Max-NDVI of the same week in a specific year (e.g. Week 18, 2014). Max-NDVI anomalies < 0 indicate where weekly Max-NDVI is lower than normal. Anomalies > 0 indicate where weekly Max-NDVI is higher than normal. Anomalies close to 0 indicate where weekly Max-NDVI is similar to normal. For more information, visit: http://open.canada.ca/data/en/dataset/ea6b4be2-9826-47f3-a387-33ddf02592f4

  • Categories  

    Topographic data for lakes within the Qu'Appelle River Valley in central Saskatchewan. This data was collected in the fall of 2008 and consists of contour lines, shorelines, spot heights, and tile index. For more information, visit: http://open.canada.ca/data/en/dataset/d838afd0-8918-42e1-acdd-8c69f9b5a7e1

  • Categories  

    The source of the layers in this mxd are derived products originating from the Agri-Environmental (AEI) dataset series. The original source data was re- formatted to enable time display on the layers, with individual soil landscape polygons being dissolved out to allow web optimization. For Layer Names with a year in the title, the source points to the Time Series Datasets, however they have a definition query applied to only display the data corresponding t o a particular year. The datasets in the series should be used in web applications only.

  • Categories  

    The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC's National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). For more information, visit: http://open.canada.ca/data/en/dataset/292646cd-619f-4200-afb1-8b2c52f984a2