Gouvernement du Canada
Type of resources
Available actions
Provided by
Representation types
Update frequencies
status
-
The Regional Deterministic Precipitation Analysis (RDPA) produces a best estimate of precipitation amounts that occurred over a period of 24 hours. The estimate integrates data from in situ precipitation gauge measurements, weather radar, satellite imagery and numerical weather prediction models. Geographic coverage is North America (Canada, United States and Mexico). Data is available at a horizontal resolution of 10 km. The 24 hour analysis is produced twice a day and is valid at 06 and 12 UTC. A preliminary analysis is available approximately 1 hour after the end of the accumulation period and a final one is generated 7 hours later in order to assimilate more gauge data.
-
Benthic invertebrates monitoring includes both lotic (rivers/streams) and lentic (wetlands) ecosystems. Aquatic biomonitoring provides a direct measure of change in biotic populations and communities in relation to benchmark or reference conditions and can help identify the ecological effects of cumulative stressors. Used together with the water chemical and physical monitoring components, this program uses an integrated approach to assess whether ecological affects are occurring in response to OS developments. Sampling can include the collection of invertebrates, algal biomass, water chemistry, and appropriate supporting habitat information and is conducted during periods of high abundance and diversity of macroinvertebrates. Sampling focuses on near-shore gravel and sand habitats on the Athabasca River, erosional habitats on major tributaries and in wadable areas in deltaic wetlands within the Expanded Geographical Area. As of October 2012, over 80 locations have been visited.
-
This map shows the projected change in mean precipitation for 2016-2035, with respect to the reference period of 1986-2005 for RCP2.6, expressed as a percentage (%) of mean precipitation in the reference period. The median projected change across the ensemble of CMIP5 climate models is shown. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.
-
Statistically downscaled multi-model ensembles of maximum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled maximum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Monitoring activities have collected bulk suspended sediment samples using continuous flow centrifuges and Phillips Tube samplers in the Lower Athabasca River and tributaries respectively. Further, in the absence of pre-development monitoring for this region, high fidelity dated lake sediment cores were used to assess the natural range in contaminant deposition to this region and to obtain a historical perspective of contaminant loadings. All sediments (suspended river and lake cores) have been analyzed in the laboratory for sediment quality variables as per Appendix B in the Integrated Monitoring Plan (cores were also analyzed for paleo indicators of ecosystem health such as diatoms). In addition, as the Lower Athabasca river bed sediments are known to shift and migrate downstream, bathymetric maps of the bed-channel morphology over time was also completed. This will allow for estimates of bed sediment transport downstream for the period of survey, and be useful in calibration/validation of sediment and contaminant numerical transport models.
-
This map shows the projected change in mean precipitation for 2046-2065, with respect to the reference period of 1986-2005 for RCP4.5, expressed as a percentage (%) of mean precipitation in the reference period. The median projected change across the ensemble of CMIP5 climate models is shown. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.
-
This map shows the projected change in mean precipitation for 2016-2035, with respect to the reference period of 1986-2005 for RCP8.5, expressed as a percentage (%) of mean precipitation in the reference period. The median projected change across the ensemble of CMIP5 climate models is shown. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.
-
Patterns of wet deposition of the nitrate (NO3), non-sea-salt sulfate (xSO4) and ammonium (NH4) ions across areas of Canada and the United States are based on measurements of precipitation depth and ion concentrations in precipitation samples. xSO4 refers to the wet deposition of sulfate with the sea-salt sulfate contribution removed at coastal sites. These measurements were collected and quality controlled by their respective networks: in Canada, the federal Canadian Air and Precipitation Monitoring Network (CAPMoN) and provincial or territorial networks in Alberta, New Brunswick, the Northwest Territories, Nova Scotia, Ontario and Quebec. In the United States, wet deposition measurements were made by two coordinated networks: the National Atmospheric Deposition Program (NADP) / National Trends Network (NTN) and the NADP/Atmospheric Integrated Research Monitoring Network (AIRMoN). Only data from sites that were designated as regionally representative were used in the mapping. Wet deposition amounts were interpolated by ordinary kriging using ArcMap Geostatistical Analyst. The map is limited to the contiguous U.S. and southeastern or southern Canada because outside that region, the interpolation error exceeds 30% due to the larger distances between stations. Links to annual and five-year average maps are available in the associated resources.
-
This map shows the projected average change in mean temperature (°C) for 2046-2065, with respect to the reference period of 1986-2005 for RCP8.5. The median projected change across the ensemble of CMIP5 climate models is shown. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.
-
This map shows the projected average change in mean temperature (°C) for 2046-2065, with respect to the reference period of 1986-2005, for RCP2.6. The median projected change across the ensemble of CMIP5 climate models is shown. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.