Type
 

RI_623

346 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
From 1 - 10 / 346
  • Hydraulic properties characterize a hydrogeological unit. The hydraulic properties considered for this dataset are the transmissivity, the hydraulic conductivity, the storage coefficient, the specific storage coefficient and the porosity. Hydraulic properties are estimated by performing aquifer tests (pumping tests, slug tests). The hydraulic tests and their duration are managed in this dataset. The methods used to create the dataset are described in the metadata associated with the dataset. The dataset exhibits a general description of hydraulic properties of the hydrogeological unit, including hydraulic test, total test duration, method and date. It includes numbers and/or ranges describing the aquifer tests results. Note that an alternate raster representation could be used in complement to the discrete point-based representation.

  • The amount of groundwater exploited is estimated in m³/year. Groundwater usages are classified in four categories: agricultural, industrial, domestic and energy. Typically, groundwater usage should be represented as a series of sub-polygons or points fitting inside the boundary of the hydrogeological unit. The scope and method used to estimate the amount of water are described in the metadata associated with the dataset. The dataset identifies the main usages for the hydrogeological unit. It features numbers and percentages describing groundwater usages for a predetermined scope. The groundwater usage is frequently compiled by municipalities or counties. It could then be possible to display the usage by superimposing a series of pie charts depicting the groundwater usages over multiples administrative areas.

  • Categories  

    The Water Survey of Canada (WSC) is the national authority responsible for the collection, interpretation and dissemination of standardized water resource data and information in Canada. In partnership with the provinces, territories and other agencies, WSC operates over 2800 active hydrometric gauges across the country. WSC maintains and provides real-time and historic hydrometric data for some 8000 active and discontinued stations. This dataset consists of a set of polygons that represent the drainage areas of both active and discontinued discharge stations. Users are encouraged to report any errors using the “Contact Us” webpage at: https://weather.gc.ca/mainmenu/contact_us_e.html?site=water

  • In the hydrogeological unit, quantity of water that replenishes groundwater beneath the water table, expressed in mm/yr. Recharge is usually calculated using hydrology balance, integrating information from precipitation, hydrology data, drainage, soil properties, evapotranspiration, etc. The result is a raster dataset in which each cell has a given value for the recharge of the aquifer. It can be calculate using HELP software, developed by the US EPA. The methods used to create the dataset are described in the metadata associated with the dataset. The dataset represent a raster in which each cell has a mean value describing the global annual recharge of the hydrogeological unit.

  • Categories  

    Multi-model ensembles of mean precipitation based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean precipitation (mm/day) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Description: Seasonal mean temperature from the British Columbia continental margin model (BCCM) were averaged over the 1993 to 2020 period to create seasonal mean climatology of the Canadian Pacific Exclusive Economic Zone. Methods: Temperatures at up to forty-six linearly interpolated vertical levels from surface to 2400 m and at the sea bottom are included. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. The data available here contain raster layers of seasonal temperature climatology for the Canadian Pacific Exclusive Economic Zone at 3 km spatial resolution and 47 vertical levels. Uncertainties: Model results have been extensively evaluated against observations (e.g. altimetry, CTD and nutrient profiles, observed geostrophic currents), which showed the model can reproduce with reasonable accuracy the main oceanographic features of the region including salient features of the seasonal cycle and the vertical and cross-shore gradient of water properties. However, the model resolution is too coarse to allow for an adequate representation of inlets, nearshore areas, and the Strait of Georgia.

  • Categories  

    First Fall Frost (0 °C) is defined as the average day, during the second half of the year, of the first occurrence of a minimum temperature at or below 0 °C. These values are calculated across Canada in 10x10 km cells.

  • The confinement describes the types of aquifer: confined, unconfined and semi-confined. Confined aquifer is bounded from above and below by impervious formations. Unconfined aquifer has a water table which serves as its upper boundary. Semi-confined aquifer is in between. Aquifer confinement is derived from geology, stratigraphy and hydrogeological unit thickness. The dataset represents the confinement assessment of the local area over the hydrogeological unit, from a controlled vocabulary.

  • Categories  

    Description: Seasonal mean pH from the British Columbia continental margin model (BCCM) were averaged over the 1981 to 2010 period to create seasonal mean climatology of the Canadian Pacific Exclusive Economic Zone. Methods: The pH at up to forty-six linearly interpolated vertical levels from surface to 2400 m and at the sea bottom are included. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. The data available here contain raster layers of seasonal pH climatology for the Canadian Pacific Exclusive Economic Zone at 3 km spatial resolution and 47 vertical levels. Uncertainties: Model results have been extensively evaluated against observations (e.g. altimetry, CTD and nutrient profiles, observed geostrophic currents), which showed the model can reproduce with reasonable accuracy the main oceanographic features of the region including salient features of the seasonal cycle and the vertical and cross-shore gradient of water properties. However, the model resolution is too coarse to allow for an adequate representation of inlets, nearshore areas, and the Strait of Georgia.

  • Categories  

    Multi-model ensembles of surface wind speed based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of surface wind speed (m/s) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better-projected climate change information.