Type
 

RI_623

337 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
From 1 - 10 / 337
  • Categories  

    This is a magnitude 5.0 earthquake scenario along the Burlington Toronto Structural Zone — a fault near Toronto and its surrounding region. This fault is not known to be active but demonstrates a plausible earthquake scenario for the Toronto region.

  • An archive of 2D regional seismic and long period magnetotelluric data collected during 20 years of work under the LITHOPROBE project. Data are primarily onshore and cover widespread regions of Canada. Available data types include raw digital data, processed sections, and images of final sections, as well as auxiliary information required for analysis of the data.

  • Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected mean temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled minimum mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected relative change in total precipitation is with respect to the reference period of 1986-2005 and expressed as a percentage (%). Seasonal and annual averages of projected precipitation change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of projected precipitation change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled total precipitation (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Multi-model ensembles for a suite of ocean variables based on projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate models (GCMs) are available for 1900-2100 on a common 1x1 degree global grid. All ocean variables currently available contain data for the top level (sea surface) of the ocean. Climate projections vary across GCMs due to differences in the representation and approximation of earth systems and processes, and natural variability and uncertainty regarding future climate drivers. Thus, there is no single best climate model. Rather, using results from an ensemble of models (e.g., taking the average) is best practice, as an ensemble takes model uncertainty into account and provides more reliable climate projections. Provided on CCDS are multi-model ensembles as well as individual model simulations. Multi-model output is available for historical simulations and six Shared Socioeconomic Pathways (SSPs) (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0, and SSP5-8.5), four future periods (near-term (2021-2040), mid-term (2041-2060 and 2061-2080), end of century (2081-2100), and up to eight percentiles (maximum, minimum, mean, 5th, 25th, 50th (median), 75th, and 95th) of the CMIP6 ensemble distribution. Datasets are available as both actual and anomaly values. Anomalies of projected changes are expressed with respect to a historical reference period of 1995-2014. The number of models in each ensemble differs according to model availability for each SSP and variable, see the model list resource for details on the models included in each ensemble. For more information on the CMIP6 multi-model ocean datasets, see the technical documentation resource.

  • Categories  

    This data series was compiled by AAFC and Statistics Canada using a combination of agroclimate data and satellite-derived Normalized Difference Vegetation Index (NDVI) data for the current growing season. The forecast is made based on a statistical model using historical yield, climate and NDVI data.

  • Categories  

    This data series represents the volumetric soil moisture (percent saturated soil) for the surface layer (<5 cm). The data is created daily and is averaged for the ISO standard week and month. The data is produced from passive microwave satellite data collected by the Soil Moisture and Ocean Salinity (SMOS) satellite and converted to soil moisture using version 6.20 of the SMOS soil moisture processor. The data are produced by the European Space Agency and obtained under a Category 1 proposal for Level 2 soil moisture data. The data are gridded to a resolution of 0.25 degrees. Data quality flags have been applied to remove areas where rainfall is present during the acquisition, where snow cover is detected and when Radio Frequency Interference (RFI) is above an acceptable threshold.

  • Categories  

    The Population of Canada, 10km Gridded national scale datasets display the distribution and areal extent of rural, urban and total populations across Canada for both 2011 and 2016. The 10km gridded framework is the same 10km gridded framework used within the Biomass Inventory Mapping and Analysis Tool. This data was created for AAFC by Statistics Canada using AAFC’s 10km gridded framework. The purpose of this data is to display the distribution of rural and urban populations across a 10km x 10km grid of Canada.

  • Categories  

    The impact of climatic variability on the environment is of great importance to the agricultural sector in Canada. Monitoring the impacts on water supplies, soil degradation and agricultural production is essential to the preparedness of the region in dealing with possible drought and other agroclimate risks. Derived normal climate data represent 30-year averages (1961-1990, 1971-2000, 1981-2010, 1991-2020) of climate conditions observed at a particular location. The derived normal climate data represents 30-year averages or “normals” for precipitation, temperature, growing degree days, crop heat units, frost, and dry spells. These normal trends are key to understanding agroclimate risks in Canada. These normal can be used as a baseline to compare against current conditions, and are particularly useful for monitoring drought risk.

  • Categories  

    30-year Average Number of Days with Minimum Daily Temperature above 20 °C is defined as the count of climate days during the year where the minimum daily temperature was above 20 °C. These values are calculated across Canada in 10x10 km cells