SubBasins
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
This polygon layer shows the spatial distribution of forecasted accumulated precipitation across watershed sub‑basins using data derived from the Regional Ensemble Prediction System (REPS). In other words, it aggregates precipitation amounts—computed from processed REPS forecast output (converted from GRIB2 files into raster [TIF] format)—over defined watershed boundaries to provide a detailed view of expected rainfall over a typical 72‑hour forecast period. This information supports regional hydrological forecasting, flood risk analysis, and water resource management. REPS forecast data are first processed to extract the accumulated precipitation field (APCP) and converted into high‑resolution raster images. These “REPS APCP rasters” represent the spatial distribution of forecast precipitation (in millimeters) over the region. Next, using pre‑defined watershed or sub‑basin boundaries, zonal statistics are applied to compute the average precipitation for each sub‑basin. The final layer displays these averaged values as polygon features, highlighting variations in forecasted rainfall across different drainage areas. This approach helps users pinpoint regions that may receive higher or lower rainfall, thereby enhancing hydrological assessments and emergency planning.
-
This polygon layer presents 7‑day and 10‑day accumulated precipitation forecasts from the Global Deterministic Prediction System (GDPS), aggregated by sub-basin. It is designed to help hydrologists, water resource managers, and emergency planners pinpoint watersheds facing higher rainfall or snowfall totals in the medium-to-long range, enabling proactive flood risk assessment, drought monitoring, and resource allocation. Developed by Environment and Climate Change Canada (ECCC), the GDPS is a global numerical weather prediction model running at approximately 15km resolution, updated twice daily (00Z and 12Z). This layer integrates 168-hour (7‑day) and 240-hour (10‑day) precipitation forecasts into sub-basin polygons, offering a comprehensive view of expected cumulative precipitation. By focusing on watershed boundaries, decision-makers can quickly gauge regional vulnerabilities to prolonged rainfall or snowfall events.Key highlights: Global Model Insight: Captures large-scale, multi-day weather systems (e.g., atmospheric rivers, persistent low-pressure systems). Sub-Basin Aggregation: Delivers averaged precip values per basin, simplifying hydrological analysis for flood or drought outlooks. Extended Outlook: Spanning from day 0 to day 10, covers both medium- and longer-term forecast horizons, essential for strategic planning and mitigation efforts. Typical Uses:Flood Forecasting – Identifying basins prone to heavy or prolonged precipitation. Water Resource Management – Adjusting reservoir release schedules or irrigation planning based on expected accumulations. Emergency Preparedness – Deploying resources or issuing advisories in vulnerable watersheds.
-
This polygon layer depicts sub-basin average observed precipitation from the High Resolution Deterministic Precipitation Analysis (HRDPA). Offers insight into how much rain/snow actually fell across each watershed in the past observation period. Observation periods we are interested are for past 1 day, 3 days and 7 days. HRDPA is ECCC’s high-resolution precipitation analysis, merging gauge, radar, and HRDPS model data. This layer aggregates the final (or preliminary) HRDPA accumulations to sub-basin polygons. Each record indicates the average precipitation that truly occurred over each watershed, vital for verifying model forecasts, calibrating hydrological models, and conducting post-event analyses of flood or drought severity.
-
This polygon layer displays 84-hour accumulated precipitation forecasts from the Regional Deterministic Prediction System (RDPS), aggregated at the sub-basin level. This layer helps hydrologists, water resource managers, and emergency responders identify watersheds with potentially higher rainfall or snowfall, facilitating short-term flood risk analysis and operational planning. Model & Domain: The RDPS is Environment and Climate Change Canada’s regional numerical weather prediction model, running at ~10 km resolution to capture mesoscale weather patterns over Canada and adjacent regions. Forecast Integration: It produces short-range forecasts (up to 84 hours), updated 4 times daily with boundary conditions from the global GEM model (GDPS). Sub-Basin Aggregation: This layer averages forecasted precipitation across each sub-basin polygon, providing a convenient snapshot of expected accumulations for hydrological modeling and water management. Key Applications:Flood Forecasting – Identifying basins at risk of heavy runoff. Resource Allocation – Positioning crews and equipment in vulnerable watersheds. Planning – Adapting reservoir release schedules, urban drainage controls, and agricultural activities
-
Shows sub-basin-averaged precipitation from the GEPS ensemble, reflecting the mean (or other metrics) of multiple ensemble members. Useful to understand probabilistic rainfall/snowfall expectations for each watershed. GEPS is ECCC’s ensemble system, running ~20 members globally to quantify forecast uncertainty out to ~16 days. This layer aggregates ensemble precipitation data over sub-basin polygons. The attribute “Average Accumulated Precipitation” often represents the ensemble mean, capturing a more probable average scenario. Operators can use this for risk-based hydrological planning or to gauge confidence in upcoming flood/drought scenarios across different sub-basins.
-
This polygon layer displays sub-basin-level average precipitation derived from the ECMWF (European Centre for Medium-Range Weather Forecasts) model. This layer helps hydrologists, forecasters, and planners see how much rainfall/snowfall is predicted or has occurred in each sub-basin, supporting medium-range water resource and flood management. We are intersested in the forecast period of 7 days. This layer aggregates ECMWF forecast precipitation over polygonal sub-basins. Each feature includes attributes for average accumulated precipitation, forecast run/valid times, and sub-basin identifiers. ECMWF is a leading global model offering medium-range (up to 10 days) forecasts at a high skill level. By focusing on sub-basins, this layer aids in local-scale decision-making—enabling more precise flood risk assessments, reservoir inflow estimates, and water resource planning across the region of interest.
-
This polygon layer shows sub-basin averages of HRDPS (High Resolution Deterministic Prediction System) precipitation. Ideal for capturing short-range (0–48h) high-resolution precipitation forecasts aggregated at the watershed scale. The HRDPS is a 2.5 km resolution model used for short-range, convection-permitting forecasts in Canada. This layer takes HRDPS precipitation totals and aggregates them by each sub-basin polygon, revealing how localized rain or snow could impact individual watersheds. Useful for near-term flood or flash-flood risk, as well as local water management during intense weather.
-
This polygon layer presents the spatial distribution of forecasted accumulated precipitation from the Global Forecast System (GFS) over watershed sub‑basins. GFS APCP raster data are overlaid with global watershed boundaries, and zonal statistics are computed to derive average precipitation per sub‑basin over a 7‑day (168‑hour) period. This product aids in global disaster preparedness and water management planning. GFS model output is processed into APCP rasters that capture accumulated precipitation over a 7‑day forecast period. These rasters are then combined with watershed boundary data, and zonal statistics are applied to compute average precipitation for each sub‑basin. The final polygon features provide a clear depiction of global rainfall and snowfall patterns, offering critical information for disaster risk management and international water resource planning.