GEOJSON
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
Statistical post-processing of weather and environmental forecasts issued by numerical models, including the Global Deterministic Prediction System (GDPS), reduces systematic bias and error variance of raw numerical forecasts. This is achieved by establishing an optimal relationship between observations recorded at stations and co-located numerical model outputs. The Updatable Model Output Statistics (UMOS) system at Environment Canada carries out this task. The statistical relationships are built using the Model Output Statistics (MOS) method and a multiple linear regression (MLR) technic. The weather and environmental variable being statistically post-processed by UMOS consists of air temperature at approximately 1.5 meters above ground. The absence of a statistically post-processed forecast can be caused by a missing statistical model due to insufficient observation data quality or quantity. Geographical coverage includes weather stations across Canada. Statistically post-processed forecasts are available at the same frequency of emission as the numerical model producing the raw forecasts and at 3-hourly lead times up to 144 hours (6 days) for the GDPS.
-
Statistical post-processing of weather and environmental forecasts issued by numerical models, including the Regional Deterministic Prediction System (RDPS), reduces systematic bias and error variance of raw numerical forecasts. This is achieved by establishing an optimal relationship between observations recorded at stations and co-located numerical model outputs. The Updatable Model Output Statistics (UMOS) system at Environment Canada carries out this task. The statistical relationships are built using the Model Output Statistics (MOS) method and a multiple linear regression (MLR) technic. The weather and environmental variables being statistically post-processed by UMOS include air temperature and dew point temperature at approximately 1.5 meters above ground as well as wind speed and direction at 10 meters above ground or at the anemometer level in the case of a buoy. The absence of a statistically post-processed forecast can be caused by a missing statistical model due to insufficient observation data quality or quantity. In addition, the absence of a post-processed forecast for wind direction could also be due to weak forecasted wind components preventing the calculation of reliable results. The forecasts of wind speed and direction are produced from independent statistical post-processing models. Geographical coverage includes weather stations across Canada. Statistically post-processed forecasts is available at the same frequency of emission as the numerical model producing the raw forecasts and at 3-hourly lead times for the RDPS.
-
MetNotes are a geo- and time-referenced, free form polygon product issued by MSC that complement today's location-based dissemination systems. The concise text of a MetNote (similar to a Tweet) is consistent with communication today where people are seeking information at a glance. Meteorologists will issue a MetNote to add contextual and/or impact information to complement the public forecast that is valid over a specific area, for a specific time range.
-
The residual materials collection calendar distributed according to the partners' standard.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
Standard fire hydrant v1**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
Exo suburban train lines**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
-
The Air Quality Health Index (AQHI) is a scale designed to help quantify the quality of the air in a certain region on a scale from 1 to 10. When the amount of air pollution is very high, the number is reported as 10+. It also includes a category that describes the health risk associated with the index reading (e.g. Low, Moderate, High, or Very High Health Risk). The AQHI is calculated based on the relative risks of a combination of common air pollutants that are known to harm human health, including ground-level ozone, particulate matter, and nitrogen dioxide. The AQHI formulation captures only the short term or acute health risk (exposure of hour or days at a maximum). The formulation of the AQHI may change over time to reflect new understanding associated with air pollution health effects. The AQHI is calculated from data observed in real time, without being verified (quality control).
-
Climate Normals and Averages are used to summarize or describe the average climatic conditions of a particular location. At the completion of each decade, Environment and Climate Change Canada updates its Climate Normals for as many locations and as many climatic characteristics as possible. The Climate Normals, Averages and Extremes offered here are based on Canadian climate stations with at least 15 years of data between 1981 to 2010.
-
Historical hydrometric data are standardized water resource data and information. They are collected, interpreted and disseminated by the National Hydrological Services (NHS) in partnership with the provinces, territories and other agencies through the National Hydrometric Program. These data sets include daily mean, monthly mean, annual maximum and minimum daily mean and instantaneous peak water level and discharge information for over 2700 active and 5100 discontinued hydrometric monitoring stations across Canada.
-
The annual maximum and minimum instantaneous data are the maximum and minimum instantaneous values for a given year.