Weather Models
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
This polygon layer represents accumulated precipitation forecasts from the Regional Ensemble Prediction System (REPS), a regional probabilistic model. It delivers ensemble‑based, short‑range precipitation forecasts—typically a 72‑hour accumulation—that aid in assessing the risk and spatial distribution of rainfall events, supporting hydrological analysis, flood forecasting, and water resource management. This polygon layer is produced by processing REPS GRIB2 files. The workflow involves extracting the precipitation field, converting it to a TIF raster, and then applying resampling, smoothing, and classification to create polygon features. These features represent forecasted rainfall totals over a 72‑hour period and are updated with each model run to maintain current predictive information. Source: Environment & Climate Change Canada
-
This polygon layer displays ensemble-based, medium-range precipitation forecasts from the Global Ensemble Prediction System (GEPS), offering a probabilistic view of future rainfall or snowfall over a 16‑day horizon. It aids in uncertainty analysis, risk assessment, and strategic resource planning. Ensemble Approach: GEPS runs multiple perturbed members of ECCC’s GEM model, capturing a range of atmospheric evolutions and yielding probability distributions for precipitation. Global Domain: Similar coverage to the GDPS but focuses on ensemble mean, spreads, and probabilities rather than a single deterministic outcome. Longer-Range Outlook: Extends up to 16 days, supporting risk-based planning for potential floods, extended rainfall events, or dryness. Data Utility: Allows decision-makers to weigh confidence levels in precipitation scenarios, vital for water management, agriculture, and emergency contingency strategies.
-
This polygon layer depicts sub-basin average observed precipitation from the High Resolution Deterministic Precipitation Analysis (HRDPA). Offers insight into how much rain/snow actually fell across each watershed in the past observation period. Observation periods we are interested are for past 1 day, 3 days and 7 days. HRDPA is ECCC’s high-resolution precipitation analysis, merging gauge, radar, and HRDPS model data. This layer aggregates the final (or preliminary) HRDPA accumulations to sub-basin polygons. Each record indicates the average precipitation that truly occurred over each watershed, vital for verifying model forecasts, calibrating hydrological models, and conducting post-event analyses of flood or drought severity.
-
This polygon layer presents 7‑day and 10‑day accumulated precipitation forecasts from the Global Deterministic Prediction System (GDPS), aggregated by sub-basin. It is designed to help hydrologists, water resource managers, and emergency planners pinpoint watersheds facing higher rainfall or snowfall totals in the medium-to-long range, enabling proactive flood risk assessment, drought monitoring, and resource allocation. Developed by Environment and Climate Change Canada (ECCC), the GDPS is a global numerical weather prediction model running at approximately 15km resolution, updated twice daily (00Z and 12Z). This layer integrates 168-hour (7‑day) and 240-hour (10‑day) precipitation forecasts into sub-basin polygons, offering a comprehensive view of expected cumulative precipitation. By focusing on watershed boundaries, decision-makers can quickly gauge regional vulnerabilities to prolonged rainfall or snowfall events.Key highlights: Global Model Insight: Captures large-scale, multi-day weather systems (e.g., atmospheric rivers, persistent low-pressure systems). Sub-Basin Aggregation: Delivers averaged precip values per basin, simplifying hydrological analysis for flood or drought outlooks. Extended Outlook: Spanning from day 0 to day 10, covers both medium- and longer-term forecast horizons, essential for strategic planning and mitigation efforts. Typical Uses:Flood Forecasting – Identifying basins prone to heavy or prolonged precipitation. Water Resource Management – Adjusting reservoir release schedules or irrigation planning based on expected accumulations. Emergency Preparedness – Deploying resources or issuing advisories in vulnerable watersheds.
-
This polygon layer shows the spatial distribution of forecasted accumulated precipitation across watershed sub‑basins using data derived from the Regional Ensemble Prediction System (REPS). In other words, it aggregates precipitation amounts—computed from processed REPS forecast output (converted from GRIB2 files into raster [TIF] format)—over defined watershed boundaries to provide a detailed view of expected rainfall over a typical 72‑hour forecast period. This information supports regional hydrological forecasting, flood risk analysis, and water resource management. REPS forecast data are first processed to extract the accumulated precipitation field (APCP) and converted into high‑resolution raster images. These “REPS APCP rasters” represent the spatial distribution of forecast precipitation (in millimeters) over the region. Next, using pre‑defined watershed or sub‑basin boundaries, zonal statistics are applied to compute the average precipitation for each sub‑basin. The final layer displays these averaged values as polygon features, highlighting variations in forecasted rainfall across different drainage areas. This approach helps users pinpoint regions that may receive higher or lower rainfall, thereby enhancing hydrological assessments and emergency planning.
-
This polygon layer displays 84-hour accumulated precipitation forecasts from the Regional Deterministic Prediction System (RDPS), aggregated at the sub-basin level. This layer helps hydrologists, water resource managers, and emergency responders identify watersheds with potentially higher rainfall or snowfall, facilitating short-term flood risk analysis and operational planning. Model & Domain: The RDPS is Environment and Climate Change Canada’s regional numerical weather prediction model, running at ~10 km resolution to capture mesoscale weather patterns over Canada and adjacent regions. Forecast Integration: It produces short-range forecasts (up to 84 hours), updated 4 times daily with boundary conditions from the global GEM model (GDPS). Sub-Basin Aggregation: This layer averages forecasted precipitation across each sub-basin polygon, providing a convenient snapshot of expected accumulations for hydrological modeling and water management. Key Applications:Flood Forecasting – Identifying basins at risk of heavy runoff. Resource Allocation – Positioning crews and equipment in vulnerable watersheds. Planning – Adapting reservoir release schedules, urban drainage controls, and agricultural activities
-
This is the web experience created using ArcGIS Web Experience Builder to portray the dynamic precipitation maps derived using various weather model data published by the Environment Canada, National Oceanic and Atmospheric Administration and European Centre for Medium-Range Weather Forecasts. It contains various precipitation layers for each of the models depicting various forecast periods / observation periods. The underlying data is updated regularly as the data gets published by ECCC/NOAA/ECMWF as per the publishing frequency. Following are the forecast weather models depicted in this Web Experience : HRDPS Model (High Resolution Deterministic Prediction System - Continental) for 24 and 48 hours of forecast periods. Regional Ensemble Prediction System (REPS) for 72 hours of forecast period hour. Regional Deterministic Prediction System (RDPS) for 84 hours of forecast period hour. Global Deterministic Prediction System (GDPS) for 168 and 240 hours of forecast periods. Global Forecast System (GFS) for 168 hours of forecast period. Global Ensemble Prediction System (GEPS) for 384 hours of forecast period. European Centre for Medium-Range Weather Forecasts for 168 hours of forecast periodAnd following are the observed weather models depicted in this Web Experience :High Resolution Deterministic Precipitation Analysis (HRDPA) with observation periods of the past 1 day, 3 days and 7 days.Special Thanks to Environment and Climate Change Canada, NOAA’s National Centers for Environmental Prediction, European Centre for Medium-Range Weather Forecasts
-
This polygon layer reflects short-range (up to 84 hours) accumulated precipitation forecasts from the Regional Deterministic Prediction System (RDPS), a high-resolution (~10 km) weather model developed by Environment and Climate Change Canada (ECCC). It supports flood forecasting, hydrological modeling, and operational planning by providing refined, near-real-time precipitation guidance for Canada and surrounding areas. Short-Range Forecasts: RDPS runs multiple times per day, offering precipitation outlooks for days 0–3.5 with updates every six hours. High Resolution: At ~10 km, RDPS captures critical mesoscale phenomena like localized downpours, lake-effect snow, and terrain-driven precipitation. Hydrological Utility: Especially valuable for sub-basin-level flood risk assessment and water resource management in near-term scenarios. Technical Basis: The RDPS is a limited-area configuration of the GEM model, using initial/boundary conditions from ECCC’s Global Deterministic Prediction System (GDPS).
-
This polygon layer showcases ultra-fine (2.5 km) short-range precipitation forecasts from the High Resolution Deterministic Prediction System (HRDPS), a convection-permitting model by Environment and Climate Change Canada. It identifies local-scale rainfall or snowfall patterns up to 48 hours, supporting urban flood forecasting, severe weather response, and detailed water resource planning. Convection-Permitting: The HRDPS can explicitly resolve thunderstorms and other small-scale weather events by running at ~2.5 km. Short-Range Focus: Typically provides forecasts out to 36–48 hours, updated several times daily. Local Impact: Valuable for pinpointing high-impact precipitation in complex terrain or urban environments, aiding emergency managers and hydrologists in short-lead-time decisions. Nested Model: Receives lateral boundary conditions from RDPS, maintaining consistency with regional forecasts while refining detail in local domains.
-
This polygon layer provides medium-range (up to 10 days) accumulated precipitation forecasts from the Global Deterministic Prediction System (GDPS), a worldwide numerical weather model run by Environment and Climate Change Canada. It addresses broad-scale weather systems and supplies boundary conditions for nested regional models. Global Scope: The GDPS covers the entire planet at ~15 km resolution, projecting large-scale atmospheric developments over a 240-hour window. Coupled Model: Integrates atmospheric and oceanic interactions, improving forecast accuracy for cyclones, frontal systems, and long-traveling storm patterns. Operational Backbone: Frequently used as a reference for regional or local models (e.g., RDPS) and for medium-range planning in water resource management or agriculture. Forecast Frequency: Runs twice daily, producing deterministic outputs that guide meteorologists, hydrologists, and emergency preparedness teams.