Prévision
Type of resources
Available actions
Keywords
Contact for the resource
Provided by
Years
Representation types
Update frequencies
status
Service types
-
The Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) carries out physics and chemistry calculations, including emissions from active wildfires, to arrive at deterministic predictions of chemical species concentration of interest to air quality, such as fine particulate matter PM2.5 (2.5 micrometers in diameter or less). Geographical coverage is Canada and the United States. Data is available at a horizontal resolution of 10 km. While the system encompasses more than 80 vertical levels, data is available only for the surface level. The products are presented as historical, annual or monthly, averages which highlight long-term trends in cumulative effects on the environment.
-
This polygon layer shows the spatial distribution of forecasted accumulated precipitation across watershed sub‑basins using data derived from the Regional Ensemble Prediction System (REPS). In other words, it aggregates precipitation amounts—computed from processed REPS forecast output (converted from GRIB2 files into raster [TIF] format)—over defined watershed boundaries to provide a detailed view of expected rainfall over a typical 72‑hour forecast period. This information supports regional hydrological forecasting, flood risk analysis, and water resource management. REPS forecast data are first processed to extract the accumulated precipitation field (APCP) and converted into high‑resolution raster images. These “REPS APCP rasters” represent the spatial distribution of forecast precipitation (in millimeters) over the region. Next, using pre‑defined watershed or sub‑basin boundaries, zonal statistics are applied to compute the average precipitation for each sub‑basin. The final layer displays these averaged values as polygon features, highlighting variations in forecasted rainfall across different drainage areas. This approach helps users pinpoint regions that may receive higher or lower rainfall, thereby enhancing hydrological assessments and emergency planning.
-
The Global Deterministic storm Surge Prediction System (GDSPS) produces water level forecasts using a modified version of the NEMO ocean model (Wang et al. 2021, 2022, 2023). It provides 240 hours forecasts twice per day on a 1/12° resolution grid (3-9 km). The model is forced by the 10 meters winds, sea level pressure, ice concentration, ice velocity and surface currents from the Global Deterministic Prediction System (GDPS). The three dimensionnal ocean temperature and salinity fields of the model are nudged to values provided by the Global Ice-Ocean Prediction System (GIOPS) and the GDPS. During the post-processing phase, storm surge elevation (ETAS) is derived from total water level (SSH) by harmonic analysis using t_tide (Foreman et al. 2009).
-
The Regional Ensemble storm Surge Prediction System (RESPS) produces storm surge forecasts using the DalCoast ocean model. DalCoast (Bernier and Thompson 2015) is a storm surge forecast system for the east coast of Canada based on the depth-integrated, barotropic and linearized form of the Princeton Ocean Model. The model is forced by the 10 meters winds and sea level pressure from the Global Ensemble Prediction System (GEPS).
-
This polygon layer provides medium-range (up to 10 days) accumulated precipitation forecasts from the Global Deterministic Prediction System (GDPS), a worldwide numerical weather model run by Environment and Climate Change Canada. It addresses broad-scale weather systems and supplies boundary conditions for nested regional models. Global Scope: The GDPS covers the entire planet at ~15 km resolution, projecting large-scale atmospheric developments over a 240-hour window. Coupled Model: Integrates atmospheric and oceanic interactions, improving forecast accuracy for cyclones, frontal systems, and long-traveling storm patterns. Operational Backbone: Frequently used as a reference for regional or local models (e.g., RDPS) and for medium-range planning in water resource management or agriculture. Forecast Frequency: Runs twice daily, producing deterministic outputs that guide meteorologists, hydrologists, and emergency preparedness teams.
-
This polygon layer represents accumulated precipitation forecasts from the Global Forecast System (GFS), a global numerical weather prediction model operated by NOAA/NCEP. It provides global medium‑range precipitation forecasts, as a 168‑hour (7‑day) accumulation, to support a wide range of weather and hydrological applications. This polygon layer is generated by extracting the accumulated precipitation field from Global Forecast System (GFS) GRIB2 files. The raw data are converted into a TIF raster, then resampled, smoothed, and classified into discrete precipitation ranges. The resulting polygon features depict forecasted precipitation accumulations over a 7‑day (168‑hour) period, allowing users to monitor expected rainfall and snowfall patterns on a global scale.
-
This polygon layer reflects short-range (up to 84 hours) accumulated precipitation forecasts from the Regional Deterministic Prediction System (RDPS), a high-resolution (~10 km) weather model developed by Environment and Climate Change Canada (ECCC). It supports flood forecasting, hydrological modeling, and operational planning by providing refined, near-real-time precipitation guidance for Canada and surrounding areas. Short-Range Forecasts: RDPS runs multiple times per day, offering precipitation outlooks for days 0–3.5 with updates every six hours. High Resolution: At ~10 km, RDPS captures critical mesoscale phenomena like localized downpours, lake-effect snow, and terrain-driven precipitation. Hydrological Utility: Especially valuable for sub-basin-level flood risk assessment and water resource management in near-term scenarios. Technical Basis: The RDPS is a limited-area configuration of the GEM model, using initial/boundary conditions from ECCC’s Global Deterministic Prediction System (GDPS).
-
This is the web experience created using ArcGIS Web Experience Builder to portray the dynamic precipitation maps derived using various weather model data published by the Environment Canada, National Oceanic and Atmospheric Administration and European Centre for Medium-Range Weather Forecasts. It contains various precipitation layers for each of the models depicting various forecast periods / observation periods. The underlying data is updated regularly as the data gets published by ECCC/NOAA/ECMWF as per the publishing frequency. Following are the forecast weather models depicted in this Web Experience : HRDPS Model (High Resolution Deterministic Prediction System - Continental) for 24 and 48 hours of forecast periods. Regional Ensemble Prediction System (REPS) for 72 hours of forecast period hour. Regional Deterministic Prediction System (RDPS) for 84 hours of forecast period hour. Global Deterministic Prediction System (GDPS) for 168 and 240 hours of forecast periods. Global Forecast System (GFS) for 168 hours of forecast period. Global Ensemble Prediction System (GEPS) for 384 hours of forecast period. European Centre for Medium-Range Weather Forecasts for 168 hours of forecast periodAnd following are the observed weather models depicted in this Web Experience :High Resolution Deterministic Precipitation Analysis (HRDPA) with observation periods of the past 1 day, 3 days and 7 days.Special Thanks to Environment and Climate Change Canada, NOAA’s National Centers for Environmental Prediction, European Centre for Medium-Range Weather Forecasts
-
This polygon layer represents accumulated precipitation forecasts from the Regional Ensemble Prediction System (REPS), a regional probabilistic model. It delivers ensemble‑based, short‑range precipitation forecasts—typically a 72‑hour accumulation—that aid in assessing the risk and spatial distribution of rainfall events, supporting hydrological analysis, flood forecasting, and water resource management. This polygon layer is produced by processing REPS GRIB2 files. The workflow involves extracting the precipitation field, converting it to a TIF raster, and then applying resampling, smoothing, and classification to create polygon features. These features represent forecasted rainfall totals over a 72‑hour period and are updated with each model run to maintain current predictive information. Source: Environment & Climate Change Canada
-
This polygon layer shows sub-basin averages of HRDPS (High Resolution Deterministic Prediction System) precipitation. Ideal for capturing short-range (0–48h) high-resolution precipitation forecasts aggregated at the watershed scale. The HRDPS is a 2.5 km resolution model used for short-range, convection-permitting forecasts in Canada. This layer takes HRDPS precipitation totals and aggregates them by each sub-basin polygon, revealing how localized rain or snow could impact individual watersheds. Useful for near-term flood or flash-flood risk, as well as local water management during intense weather.
Arctic SDI catalogue