agclimate
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Representation types
Update frequencies
status
-
Departure from Average Precipitation represents the accumulated precipitation value for a location, subtracted by the long term average value. The long term average value is defined as the average amount over the 1981 – 2010 period. A negative value indicates that the location has received less than the normal amount of precipitation (mm) for that timeframe. A positive value indicates that the location has received more than the normal amount of precipitation (mm). Products are produced for the following timeframes: Agricultural Year, Growing Season, Winter Season as well as rolling products for 30, 60, 90, 180, 270, 365, 730, 1095, 1460 and 1825 days.
-
Accumulated Precipitation represents the amount of total precipitation in mm (solid and/or liquid) which has been recorded over a given period of time. Products are produced for the following timeframes: Agricultural Year, Growing Season, Winter Season, as well as rolling products for 7, 14, 30, 60, 90, 180, 270, 365, 730, 1095, 1460 and 1825 days.
-
The term "Palmer Drought Index" has been used collectively to represent multiple indices. This index is simply a water balance model which analyzes precipitation and temperature, and used as a tool to measure meteorological and hydrological drought across space and time. All versions of the index uses the Versatile Soil Moisture Budget to model the movement of water within the system, and a daily Priestly-Taylor model to estimate evapotranspiration. The Palmer Drought Index (PDI) uses monthly temperature and precipitation data to calculate a simple soil water balance. The index is a relative measure that typically ranges from -4 (extremely dry) to +4 (extremely wet) and represents how soil moisture availability differs from that expected for a given place and time of year. The PDI includes a "memory" component that considers past conditions and persistence of soil moisture surplus or deficit. The Palmer Hydrological Drought Index (PHDI) is a specific version of the PDI that accounts for longer-term drought that reduces surface and groundwater supply.
-
Precipitation Percentiles represents the accumulated precipitation (mm) for the time period compared to historical information for the same time period. This comparison ranks the current precipitation amount and assigns it a percentile value based on a historic record. Products are produced for the following timeframes: Agricultural Year, Growing Season and Winter Season as well as rolling products for 30, 60, 90 and 180 days
-
Maximum Temperature represents the highest recorded temperature value (°C) at each location for a given time period. Time periods include the previous 24 hours and the previous 7 days from the available date where a climate day starts at 0600UTC.
-
Percent of Average Precipitation represents the accumulation of precipitation for a location, divided by the long term average value. The long term average value is defined as the average amount over the 1981 – 2010 period. Products are produced for the following timeframes: Agricultural Year, Growing Season, Winter Season, as well as rolling products for 30, 60, 90, 180, 270, 365, 730, 1095, 1460 and 1825 days.
-
Heat Wave represents the consecutive number of days (April 1 – October 31) where the maximum daily temperature is greater than 25 or 30 degrees respectively. Heat wave products are only generated during the Growing Season, April 1 through October 31.
-
Dry spell periods are defined as the number of days (April 1 – October 31) where daily precipitation is less than 0.5 mm. This is not an accumulation of precipitation, simply a count of days. Dry spell products are only generated during the Growing Season, April 1 through October 31.
-
Crop Heat Units (CHU) are calculated on a daily basis, using the maximum and minimum temperatures in order to account for a crop’s negative response to higher temperatures. The formula used to calculate the CHU value for a day is: (1.8 × (Minimum Temperature − 4.4) + 3.33 × (Maximum Temperature − 10) − 0.084 × (Maximum Temperature − 10)²) ÷ 2.0 CHU values are only accumulated during the Growing Season, April 1 through October 31.
-
The Standardized Precipitation Evapotranspiration Index (SPEI) is computed similarly to the SPI. The main difference is that SPI assesses precipitation variance, while SPEI also considers demand from evapotranspiration which is subtracted from any precipitation accumulation prior to assessment. Unlike the SPI, the SPEI captures the main impact of increased temperatures on water demand.