Topic
 

climatologyMeteorologyAtmosphere

488 record(s)
 
Type of resources
Available actions
Categories
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 488
  • Categories  

    Fire weather refers to weather conditions that are conducive to fire. These conditions determine the fire season, which is the period(s) of the year during which fires are likely to start, spread and do sufficient damage to warrant organized fire suppression. The length of fire season is the difference between the start- and end-of-fire-season dates. These are defined by the Canadian Forest Fire Weather Index (FWI; http://cwfis.cfs.nrcan.gc.ca/) start-up and end dates. Start-up occurs when the station has been snow-free for 3 consecutive days, with noon temperatures of at least 12°C. For stations that do not report significant snow cover during the winter (i.e., less than 10 cm or snow-free for 75% of the days in January and February), start-up occurs when the mean daily temperature has been 6°C or higher for 3 consecutive days. The fire season ends with the onset of winter, generally following 7 consecutive days of snow cover. If there are no snow data, shutdown occurs following 7 consecutive days with noon temperatures lower than or equal to 5°C. Historical climate conditions were derived from the 1981–2010 Canadian Climate Normals. Future projections were computed using two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: difference in projected fire season length for the short-term (2011-2040) under the RCP 8.5 (continued emissions increases) compared to reference period across Canada.

  • Categories  

    Growing Degree Days (GDDs) are used to estimate the growth and development of plants and insects during the growing season. Insect and plant development are very dependent on temperature and the daily accumulation of heat. The amount of heat required to move a plant or pest to the next development stage remains constant from year to year. However, the actual amount of time (days) can vary considerably from year to year because of weather conditions. Base temperatures are a point below which development does not occur for the organism in question. Base 10 temperatures are commonly used for grasshoppers and beans. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    Drought is a deficiency in precipitation over an extended period, usually a season or more, resulting in a water shortage that has adverse impacts on vegetation, animals and/or people. The Climate Moisture Index (CMI) was calculated as the difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of water vapour from a landscape covered by vegetation. Positive CMI values indicate wet or moist conditions and show that precipitation is sufficient to sustain a closed-canopy forest. Negative CMI values indicate dry conditions that, at best, can support discontinuous parkland-type forests. The CMI is well suited to evaluating moisture conditions in dry regions such as the Prairie Provinces and has been used for other ecological studies. Mean annual potential evapotranspiration (PET) was estimated for 30-year periods using the modified Penman-Monteith formulation of Hogg (1997), based on monthly 10-km gridded temperature data. Data shown on maps are 30-year averages. Historical values of CMI (1981-2010) were created by averaging annual CMI calculated from interpolated monthly temperature and precipitation data produced from climate station records. Future values of CMI were projected from downscaled monthly values of temperature and precipitation simulated using the Canadian Earth System Model version 2 (CanESM2) for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected mean annual Climate Moisture Index across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Hogg, E.H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology 84,115–122.

  • Categories  

    Drought is a deficiency in precipitation over an extended period, usually a season or more, resulting in a water shortage that has adverse impacts on vegetation, animals and/or people. The Climate Moisture Index (CMI) was calculated as the difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of water vapour from a landscape covered by vegetation. Positive CMI values indicate wet or moist conditions and show that precipitation is sufficient to sustain a closed-canopy forest. Negative CMI values indicate dry conditions that, at best, can support discontinuous parkland-type forests. The CMI is well suited to evaluating moisture conditions in dry regions such as the Prairie Provinces and has been used for other ecological studies. Mean annual potential evapotranspiration (PET) was estimated for 30-year periods using the modified Penman-Monteith formulation of Hogg (1997), based on monthly 10-km gridded temperature data. Data shown on maps are 30-year averages. Historical values of CMI (1981-2010) were created by averaging annual CMI calculated from interpolated monthly temperature and precipitation data produced from climate station records. Future values of CMI were projected from downscaled monthly values of temperature and precipitation simulated using the Canadian Earth System Model version 2 (CanESM2) for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected mean annual Climate Moisture Index across Canada for the long-term (2071-2100) under the RCP 2.6 (rapid emissions reductions). Reference: Hogg, E.H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology 84,115–122.

  • Categories  

    Last Spring Frost (0 °C) is defined as the average day, during the first half of the year, of the last occurrence of a minimum temperature at or below 0 °C. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    The term "Palmer Drought Index" has been used collectively to represent multiple indices. This index is simply a water balance model which analyzes precipitation and temperature, and used as a tool to measure meteorological and hydrological drought across space and time. All versions of the index uses the Versatile Soil Moisture Budget to model the movement of water within the system, and a daily Priestly-Taylor model to estimate evapotranspiration. The Palmer Drought Index (PDI) uses monthly temperature and precipitation data to calculate a simple soil water balance. The index is a relative measure that typically ranges from -4 (extremely dry) to +4 (extremely wet) and represents how soil moisture availability differs from that expected for a given place and time of year. The PDI includes a "memory" component that considers past conditions and persistence of soil moisture surplus or deficit. The Modified Palmer Drought Index (PMDI) is obtained from the sum of the wet and dry terms weighted by probability values. The PMDI has the same value as the PDI during established dry or wet spells but can be different during transition periods.

  • Categories  

    The Blended Index (BI) is a model which employs multiple potential indicators of drought and excess moisture, such as the Palmer drought index, rolling precipitation amounts and soil moisture, and combines them into a weighted, normalized value between 0 and 100. The inputs and weights used in this model are subject to change periodically as it is optimized to best represent extent, duration and severity of impactful weather conditions. The blended index is deployed as two variations; short term (st) focusing on 1 to 3 months, and long term (lt) focusing on 6 months to 5 years.

  • Categories  

    Water demand is usually measured by evapotranspiration: the amount of water that would be evaporated and transpired by plants. Potential Evapotranspiration (PET) is the demand or maximum amount of evaporation that would occur if sufficient water were available (from precipitation and soil moisture). Priestly-Taylor equations were used to estimate daily PET. These values are calculated across Canada using historical climate station data from ECCC with the Versatile Soil Moisture Budget model (Baier and Robertson, 1996 and Baier et al., 2000).

  • Categories  

    Dry spell periods are defined as the number of days (April 1 – October 31) where daily precipitation is less than 0.5 mm. This is not an accumulation of precipitation, simply a count of days. Dry spell products are only generated during the Growing Season, April 1 through October 31.