climatologyMeteorologyAtmosphere
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Gögnin innhalda staðsetningu veðurstöðva sem eru í eigu Vegagerðarinnar og staðsettar eru við þjóðvegi en einnig veðurstöðvar í eigu Veðurstofunnar og annarra.
-
Difference from normal soil moisture is the modelled amount of plant available water (mm) in the root zone of the soil, minus the average amount that has historically been available on that day. This value is intended to provide users with a representation of conditions above or below normal and by the amount of water (mm). Values are computed using the Versatile Soil Moisture Budget (VSMB)
-
The Agri-Environmental Indicator Soil Erosion Risk dataset provides the estimated risk of soil loss from the combined effects of wind, water, and tillage for Soil Landscapes of Canada agricultural areas for each year since 1981 to 2021.
-
30-year Average Dry Day Count is defined as the count of the average number of climate days which received less than 0.5 mm of precipitation during the calendar month. These values are calculated across Canada in 10x10 km cells, and are based on average precipitation amounts over a 30-year period (1961-1990, 1971-2000, 1981-2010, 1991-2020). These values are calculated across Canada in 10x10 km cells.
-
Drought is a deficiency in precipitation over an extended period, usually a season or more, resulting in a water shortage that has adverse impacts on vegetation, animals and/or people. The Climate Moisture Index (CMI) was calculated as the difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of water vapour from a landscape covered by vegetation. Positive CMI values indicate wet or moist conditions and show that precipitation is sufficient to sustain a closed-canopy forest. Negative CMI values indicate dry conditions that, at best, can support discontinuous parkland-type forests. The CMI is well suited to evaluating moisture conditions in dry regions such as the Prairie Provinces and has been used for other ecological studies. Mean annual potential evapotranspiration (PET) was estimated for 30-year periods using the modified Penman-Monteith formulation of Hogg (1997), based on monthly 10-km gridded temperature data. Data shown on maps are 30-year averages. Historical values of CMI (1981-2010) were created by averaging annual CMI calculated from interpolated monthly temperature and precipitation data produced from climate station records. Future values of CMI were projected from downscaled monthly values of temperature and precipitation simulated using the Canadian Earth System Model version 2 (CanESM2) for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected mean annual Climate Moisture Index across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Hogg, E.H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology 84,115–122.
-
The Agri-Environmental Indicator - Agriculture Ammonia Emissions datasets provides estimated amounts of ammonia (NH3) emitted into the atmosphere through agricultural activities. Products in this data series present results for predefined areas as defined by the Soil Landscapes of Canada (SLC v.3.2) data series, uniquely identified by SOIL_LANDSCAPE_ID values.
-
The Global Ensemble Prediction System (GEPS) carries out physics calculations to arrive at probabilistic predictions of atmospheric elements from the current day out to 16 days into the future (up to 32 days once a week on Thursdays at 00UTC). The GEPS produces different outlooks (scenarios) to estimate the forecast uncertainties due to the nonlinear (chaotic) behaviour of the atmosphere. The probabilistic predictions are based on an ensemble of 20 scenarios that differ in their initial conditions, their physics parameters which are randomly perturbed by a Stochastic Parameter Perturbation (SPP) method, and the stochastic perturbations (kinetic energy). A control member that is not perturbed is also available. Weather elements include temperature, precipitation, cloud cover, wind speed and direction, humidity and others. This product contains raw numerical results of these calculations. Geographical coverage is global. The horizontal resolution of the system is 0.35 degree (about 39 km at equator). The system has 84 vertical levels for the forecasts and for the analyses. Predictions are performed twice a day.
-
The Versatile Soil Moisture Budget (VSMB) is a soil water budget model that is continuous and deterministic in nature and was developed by AAFC. It is based on the premise that the water available for plant growth is gained by precipitation or irrigation, and lost through evapotranspiration and runoff as well as lateral and deep drainage. The daily net loss or gain is added or subtracted from the water already present in the rooting zone. Water is withdrawn simultaneously, but at different rates, from different soil depths, depending on the potential evapotranspiration, the stage of crop development, the water release characteristics of each soil layer and the available water.
-
Probability of 10-day precipitation total above 10mm (p10d_prob10). Week 1 and week 2 forecasted probability is available daily from September 1 to August 31. Week 3 and week 4 forecasted probability is available weekly (Thursday) from September 1 to August 31. Precipitation (moisture availability) establishes the economic yield potential and product quality of field crops. Both dry and wet precipitation extremes have the ability to inhibit proper crop growth. The greatest daily precipitation index covers the risk of excessive precipitation in the short term, while the other indices pertain to longer term moisture availability. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.
-
The Indicator of Risk of Water Contamination by nitrogen (IROWC-N) estimates the risk of water contamination by nitrogen leaching on agricultural lands in Canada from 1981 to 2021. High nitrate level ( > 10 mg N/L) in drinking water may lead to various health impacts including methemoglobinemia (blue baby syndrome) and non-Hodgkin’s lymphoma. High nitrate levels in surface waters can also contribute to algal growth and eutrophication.