Topic
 

climatologyMeteorologyAtmosphere

571 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 571
  • Categories  

    Gögnin innhalda staðsetningu veðurstöðva sem eru í eigu Vegagerðarinnar og staðsettar eru við þjóðvegi en einnig veðurstöðvar í eigu Veðurstofunnar og annarra.

  • Categories  

    An accumulated value of heat degrees that the average temperature is above a specified threshold, 10°C for warm season crops. This condition must be maintained for at least 5 consecutive days in order for EGDD to be accumulated (egdd_warm). Week 1 and week 2 forecasted index is available daily from April 1 to October 31. Week 3 and week 4 forecasted index is available weekly (Thursday) from April 1 to October 31. Cumulative heat-energy satisfies the essential requirement of field crop growth and development towards a high yield and good quality of agricultural crop products. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.

  • Categories  

    30-year Average Number of Days with Minimum Daily Temperature below -30 °C is defined as the count of climate days during the month where the minimum daily temperature was below -30 °C. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    The Regional Deterministic Precipitation Analysis (RDPA) produces a best estimate of the amount of precipitation that occurred over recent past periods of 6 or 24 hours. The estimate integrates data from in situ precipitation gauge measurements, weather radar, satellite imagery and numerical weather prediction models. Geographic coverage is North America (Canada, United States and Mexico). Data is available at horizontal resolution of 10 km. Data is only available for the surface level. Analysis data is made available four times a day for 6h intervals and twice a day for the 24h interval. A preliminary estimate is available approximately 1h after the end of the accumulation period, and revised 7h after in order to assimilate gauge data arriving later.

  • Categories  

    A station is a site on a river or lake where water quantity (water level and flow) are collected and recorded.

  • Categories  

    Probability of daily precipitation above 10mm over the forecast period (p1d10_prob). Week 1 and week 2 forecasted probability is available daily from September 1 to August 31. Week 3 and week 4 forecasted probability is available weekly (Thursday) from September 1 to August 31. Units: mm Precipitation (moisture availability) establishes the economic yield potential and product quality of field crops. Both dry and wet precipitation extremes have the ability to inhibit proper crop growth. The greatest daily precipitation index covers the risk of excessive precipitation in the short term, while the other indices pertain to longer term moisture availability. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.

  • Categories  

    Last Spring Frost (-4 °C) is defined as the average day, during the first half of the year, of the last occurrence of a minimum temperature at or below -4 °C. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    Multi-model ensembles of sea ice thickness based on projections from twenty-six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice thickness (m) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Statistically downscaled multi-model ensembles of minimum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled minimum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Gridded monthly, seasonal and annual mean temperature anomalies derived from daily minimum, maximum and mean surface air temperatures (degrees Celsius) is available at a 50km resolution across Canada. The Canadian gridded data (CANGRD) are interpolated from homogenized temperature (i.e., AHCCD datasets). Homogenized temperatures incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation. The anomalies are the difference between the temperature for a given year or season and a baseline value (defined as the average over 1961-1990 as the reference period). The yearly and seasonal temperature anomalies were computed for the years 1948 to 2017. The data will continue to be updated every year.