Topic
 

climatologyMeteorologyAtmosphere

555 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 555
  • Categories  

    Gögnin innhalda staðsetningu veðurstöðva sem eru í eigu Vegagerðarinnar og staðsettar eru við þjóðvegi en einnig veðurstöðvar í eigu Veðurstofunnar og annarra.

  • Categories  

    The Agri-Environmental Indicator Particulate Matter dataset provides an estimated net emissions of particulate matter from agricultural lands.

  • Categories  

    This map shows the projected average change in mean temperature (°C) for 2046-2065, with respect to the reference period of 1986-2005 for RCP4.5. The median projected change across the ensemble of CMIP5 climate models is shown. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.

  • Categories  

    Maximum Temperature represents the highest recorded temperature value (°C) at each location for a given time period. Time periods include the previous 24 hours and the previous 7 days from the available date where a climate day starts at 0600UTC.

  • Categories  

    Monthly 30-year Average Maximum Temperature represents the average monthly maximum temperature calculated for a given location averaged across a 30 year period (1961-1991, 1971-2000, 1981-2010, 1991-2020). These values are calculated across Canada in 10x10 km cells.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the short-term (2011-2040) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    Difference from normal soil moisture is the modelled amount of plant available water (mm) in the root zone of the soil, minus the average amount that has historically been available on that day. This value is intended to provide users with a representation of conditions above or below normal and by the amount of water (mm). Values are computed using the Versatile Soil Moisture Budget (VSMB)

  • Categories  

    Multi-model ensembles of mean precipitation based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean precipitation (mm/day) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Heat Wave represents the consecutive number of days (April 1 – October 31) where the maximum daily temperature is greater than 25 or 30 degrees respectively. Heat wave products are only generated during the Growing Season, April 1 through October 31.

  • Categories  

    The probability (likelihood) of ice freeze days, the number of days in the forecast period with a minimum temperature below the frost temperature, -5°C for herbaceous crops over the non-growing season (ifd_herb_nogrow_prob). Week 1 and week 2 forecasted probability is available daily from November 1 to March 31. Week 3 and week 4 forecasted probability is available weekly (Thursday) from November 1 to March 31. Over-wintering crops are biennial and perennial field crops such as herbaceous plants (strawberry, alfalfa, timothy, and many other forage crops) and woody fruit trees (apple, pear, peach, cherry, plum, apricot, chestnut, pecan, grape, etc.). These crops normally grow and develop in the growing season and become dormant in the non-growing season. However, extreme weather and climate events such as cold waves in the growing season and ice freezing events during the winter are a major constraint for their success of production and survival in Canada. The winter survival of these plants depends largely on agrometeorological conditions from late autumn to early spring, especially ice-freezing damage during the winter season. The optimum temperature for such crops is 25°C. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily basis.