Topic
 

climatologyMeteorologyAtmosphere

521 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 521
  • Categories  

    Gögnin innhalda staðsetningu veðurstöðva sem eru í eigu Vegagerðarinnar og staðsettar eru við þjóðvegi en einnig veðurstöðvar í eigu Veðurstofunnar og annarra.

  • Categories  

    Last Spring Frost (-2 °C) is defined as the average day, during the first half of the year, of the last occurrence of a minimum temperature at or below -2 °C. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    First Fall Frost (-4 °C) is defined as the average day, during the second half of the year, of the first occurrence of a minimum temperature at or below -4 °C. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    This series includes maps of projected change in mean precipitation based on CMIP5 multi-model ensemble results for RCP2.6, RCP4.5 and RCP8.5, expressed as a percentage (%) of mean precipitation in the reference period. The median projected change across the ensemble of CMIP5 climate models is shown. Maps are provided for three time periods: 2016-2035, 2046-2065 and 2081-2100. For more maps on projected change, please visit the Canadian Climate Data and Scenarios (CCDS) site: https://climate-scenarios.canada.ca/?page=download-cmip5.

  • Categories  

    The Agri-Environmental Indicator Risk of Water Contamination by Coliforms provides two variables including the Soil Coliform Load and the Coliform Risk to Water. The Soil Coliform Load indicator is the estimated accumulation of coliforms on the soil and the Coliform Risk to Water indicator is the relative risk of coliforms getting into the waterways. Products in this data series present results for predefined areas as defined by the Soil Landscapes of Canada (SLC v.3.2) data series, uniquely identified by SOIL_LANDSCAPE_ID values.

  • Categories  

    First Fall Frost (0 °C) is defined as the average day, during the second half of the year, of the first occurrence of a minimum temperature at or below 0 °C. These values are calculated across Canada in 10x10 km cells.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    HREPA is part of the NSRPS (National Surface and River Prediction System) experimental system dependent on two other systems. It uses surface station observations and radar QPEs pre-processed by HRDPA and disturbed trial fields generated by the Canadian Land Data Assimilation System (CaLDAS). HREPA produces four precipitation analyses per day on 6-hour accumulations valid at synoptic times (00, 06, 12, and 18 UTC). Each analysis set contains 24 members plus the control member. A quality index (confidence index) is also available on the same grid as the precipitation fields. Finally, two percentiles, 25th and 75th, estimated on these sets are also provided for each synoptic hour. Currently, there is only a high-resolution version of the system, whose domain covers Canada and the northern United States with a horizontal resolution of about 2.5km.

  • Categories  

    Temperature is a key factor affecting the physiological development of field crops as well as crop yield and agricultural product quality achieved during the growing season. Crop responses to the temperature are characterized by three important cardinal temperature indices; the cardinal minimum temperature, maximum cardinal temperature, and optimum temperature for field crop production at which the plant growth and development can start, stop, and proceed at the maximum rate respectively. Agriculture is an important primary production sector in Canada. Agricultural production, profitability, sustainability and food security depend on many agrometeorological factors. Extreme weather events in Canada, such as drought, floods, heat waves, frosts and high intensity storms, have the ability to significantly impact field crop production. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily basis.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 2.6 (rapid emissions reductions). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.