climatologyMeteorologyAtmosphere
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Last Spring Frost (0 °C) is defined as the average day, during the first half of the year, of the last occurrence of a minimum temperature at or below 0 °C. These values are calculated across Canada in 10x10 km cells.
-
Manual snow survey (active & inactive) locations as part of the BC Snow Survey program.
-
Seasonal and annual trends of relative total precipitation change (%) for 1948-2012 based on Canadian gridded data (CANGRD) are available, at a 50km resolution across Canada. The relative trends reflect the percent change in total precipitation over a period from the baseline value (defined as the average over 1961-1990 as the reference period). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Adjusted precipitation data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.
-
First Fall Frost (0 °C) is defined as the average day, during the second half of the year, of the first occurrence of a minimum temperature at or below 0 °C. These values are calculated across Canada in 10x10 km cells.
-
An accumulated value of heat degrees that the average temperature is above a specified threshold, 10°C for warm season crops. This condition must be maintained for at least 5 consecutive days in order for EGDD to be accumulated (egdd_warm). Week 1 and week 2 forecasted index is available daily from April 1 to October 31. Week 3 and week 4 forecasted index is available weekly (Thursday) from April 1 to October 31. Cumulative heat-energy satisfies the essential requirement of field crop growth and development towards a high yield and good quality of agricultural crop products. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.
-
Fire weather refers to weather conditions that are conducive to fire. These conditions determine the fire season, which is the period(s) of the year during which fires are likely to start, spread and do sufficient damage to warrant organized fire suppression. The length of fire season is the difference between the start- and end-of-fire-season dates. These are defined by the Canadian Forest Fire Weather Index (FWI; http://cwfis.cfs.nrcan.gc.ca/) start-up and end dates. Start-up occurs when the station has been snow-free for 3 consecutive days, with noon temperatures of at least 12°C. For stations that do not report significant snow cover during the winter (i.e., less than 10 cm or snow-free for 75% of the days in January and February), start-up occurs when the mean daily temperature has been 6°C or higher for 3 consecutive days. The fire season ends with the onset of winter, generally following 7 consecutive days of snow cover. If there are no snow data, shutdown occurs following 7 consecutive days with noon temperatures lower than or equal to 5°C. Historical climate conditions were derived from the 1981–2010 Canadian Climate Normals. Future projections were computed using two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: difference in projected fire season length for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases) compared to reference period across Canada.
-
Last Spring Frost (-4 °C) is defined as the average day, during the first half of the year, of the last occurrence of a minimum temperature at or below -4 °C. These values are calculated across Canada in 10x10 km cells.
-
Crop Heat Units (CHU) are calculated on a daily basis, using the maximum and minimum temperatures in order to account for a crop’s negative response to higher temperatures. The formula used to calculate the CHU value for a day is: (1.8 × (Minimum Temperature − 4.4) + 3.33 × (Maximum Temperature − 10) − 0.084 × (Maximum Temperature − 10)²) ÷ 2.0 CHU values are only accumulated during the Growing Season, April 1 through October 31.
-
The Global Ensemble Prediction System (GEPS) carries out physics calculations to arrive at probabilistic predictions of atmospheric elements from the current day out to 16 days into the future (up to 32 days once a week on Thursdays at 00UTC). The GEPS produces different outlooks (scenarios) to estimate the forecast uncertainties due to the nonlinear (chaotic) behaviour of the atmosphere. The probabilistic predictions are based on an ensemble of 20 scenarios that differ in their initial conditions, their physics parameters which are randomly perturbed by a Stochastic Parameter Perturbation (SPP) method, and the stochastic perturbations (kinetic energy). A control member that is not perturbed is also available. Weather elements include temperature, precipitation, cloud cover, wind speed and direction, humidity and others. This product contains raw numerical results of these calculations. Geographical coverage is global. The horizontal resolution of the system is 0.35 degree (about 39 km at equator). The system has 84 vertical levels for the forecasts and for the analyses. Predictions are performed twice a day.
-
Growing Degree Days (GDDs) are used to estimate the growth and development of plants and insects during the growing season. Insect and plant development are very dependent on temperature and the daily accumulation of heat. The amount of heat required to move a plant or pest to the next development stage remains constant from year to year. However, the actual amount of time (days) can vary considerably from year to year because of weather conditions. Base temperatures are a point below which development does not occur for the organism in question. Base 0 temperatures are commonly used for cereals. These values are calculated across Canada in 10x10 km cells.