Precipitation
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
-
This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC’s National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). The drought areas are classified as follows: D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years; D1 (Moderate Drought) – represents an event that occurs every 5-10 years; D2 (Severe Drought) – represents an event that occurs every 10-20 years; D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and D4 (Exceptional Drought) – represents an event that occurs every 50 years. Impact lines highlight areas that have been physically impacted by drought. Impact labels specify the longitude and magnitude of impacts. The impact labels are classified as follows: S – Short-Term, typically less than 6 months (e.g. agriculture, grasslands). L – Long-Term, typically more than 6 months (e.g. hydrology, ecology).
-
The Drought Impact Label dataset is used on all drought polygons from D1 to D4 to specify the longitude and magnitude of impacts. Impact labels are often used in association with the Drought Impact Line dataset. The impact labels are classified as follows: S – Short-Term, typically less than 6 months. L – Long-Term, typically more than 6 months. SL – A combination of Short and Long-Term impacts.
-
The Drought Impact Lines dataset highlights areas that have been physically impacted by drought. All drought impact lines have a drought impact label inside of them to express the longevity of the impact. The impact lines are classified using impact labels as follows: S – Short-Term, typically less than 6 months. L – Long-Term, typically more than 6 months. SL – A combination of Short and Long-Term impacts.
-
This data represents the dryness of the land surface based on vegetation conditions. The data is created weekly and uses weekly information on precipitation anomalies (namely the Standardized Precipitation Index or SPI) and satellite vegetation condition derived from Normalized Difference Vegetation Index (NDVI) from the MODIS Satellite. These dynamic data sets along with static data sets on land cover, soil water holding capacity, irrigation, ecozones and land surface elevation are used to model the drought severity, based on the Palmer Drought Severity Index (PDSI). The mapcubist model was trained on historical data and applied in real time to the dynamic inputs to produce drought severity ratings. The model is run at a 1km resolution and was developed by the AAFC, the United States Geological Survey and the United States Drought Monitor at the University of Nebraska Lincoln.
-
30-year Average precipitation represents the average amount (mm) of precipitation received in a month across a 30 year period (1961-1991, 1971-2000, 1981-2010, 1991-2020). These values are calculated across Canada in 10x10 km cells.
-
First Fall Frost (0 °C) is defined as the average day, during the second half of the year, of the first occurrence of a minimum temperature at or below 0 °C. These values are calculated across Canada in 10x10 km cells.
-
30-year Average Number of Days with Temperature above 30 °C are defined as the count of the number of climate days during the time period where the maximum daily temperature was greater than 30 °C. These values are calculated across Canada in 10x10 km cells.
-
Geospatial climate change projections are critical for assessing climate change impacts and adaptations across a wide range of disciplines. Here we present monthly-based grids of climate change projections at a 2-km resolution covering Canada and the United States. These data products are based on outputs from the 6th Coupled Model Intercomparison Project (CMIP6) and include projections for 13 General Circulation Models (GCMs) , three Shared Socio-economic Pathways (SSP1 2.6, SSP2 4.5, and SSP5 8.5), four 30-year time periods (2011-2040, 2021-2050, 2041-2070, and 2071-2100), and a suite of climate variables, including monthly maximum and minimum temperature, precipitation, climate moisture index, and various bioclimatic summaries. The products employ a delta downscaling method, which combines historical normal values at climate stations with broad-scale change projections (or deltas) from GCMs, followed by spatial interpolation using ANUSPLIN. Various quality control efforts, described herein, were undertaken to ensure that the final products provided reasonable estimates of future climate.
-
30-year Average Number of Days with Minimum Daily Temperature above 20 °C is defined as the count of climate days during the year where the minimum daily temperature was above 20 °C. These values are calculated across Canada in 10x10 km cells
-
30-year Average Number of Days with Temperature above 32 °C are defined as the count of the number of climate days during the month where the maximum daily temperature was greater than 32 °C. These values are calculated across Canada in 10x10 km cells.
Arctic SDI catalogue