From 1 - 10 / 13
  • Categories  

    Emerald Basin on the Scotia Shelf off Nova Scotia, Canada, is home to a globally unique population of the glass sponge Vazella pourtalesi. Through the analysis of both in situ photographs and trawl catch data from annual multispecies bottom-trawl surveys, we examined community composition, species density, and abundance of epibenthos and fish associated with V. pourtalesi compared to locations without this sponge. Using generalized linear models and analysis of similarities, the importance of V. pourtalesi in enhancing species density and abundance of the associated epibenthic community was assessed against that of the hard substrate on which it settles. Our results indicated that the megafaunal assemblage associated with V. pourtalesi was significantly different in composition and higher in species density and abundance compared to locations without V. pourtalesi. Analysis of similarity of trawl catch data indicated that fish communities associated with the sponge grounds are significantly different from those without V. pourtalesi, although no species were found exclusively on the sponge grounds. Our study provides further evidence of the role played by sponge grounds in shaping community structure and biodiversity of associated deep-sea epibenthic and fish communities. The mechanism for biodiversity enhancement within the sponge grounds formed by V. pourtalesi is likely the combined effect of both the sponge itself and its attachment substrate, which together comprise the habitat of the sponge grounds. We also discuss the role of habitat provision between the mixed-species tetractinellid sponges of the Flemish Cap and the monospecific glass sponge grounds of Emerald Basin. Please refer to the following citation for additional details on the data: Hawkes N, Korabik M, Beazley L, Rapp HT, Xavier JR, Kenchington E (2019) Glass sponge grounds on the Scotian Shelf and their associated biodiversity. Mar Ecol Prog Ser 614:91-109. https://doi.org/10.3354/meps12903 Cite this data as: Hawkes, Nickolas; Korabik, Michelle; Beazley, Lindsay; Rapp, Hans Tore; Xavier, Joana; Kenchington, Ellen (2019) Glass sponge grounds on the Scotian Shelf and their associated biodiversity. Published September 2023.Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/83c8e9af-ad3a-40bc-b1b7-d1ed4a069330

  • Categories  

    Species distribution models (SDMs) are tools that combine species observations of occurrence, abundance, or biomass with environmental variables to predict the distribution of a species in unsampled locations. To produce accurate predictions of occurrence, abundance or biomass distribution, a wide range of physical and/or biological variables is desirable. Such data is often collected over limited or irregular spatial scales, and require the application of geospatial techniques to produce continuous environmental surfaces that can be used for modelling at all spatial scales. Here we provide a review of 102 environmental data layers that were compiled for the entire spatial extent of Fisheries and Oceans Canada’s (DFO) Maritimes Region. Variables were obtained from a broad range of physical and biological data sources and spatially interpolated using geostatistical methods. For each variable we document the underlying data distribution, provide relevant diagnostics of the interpolation models and an assessment of model performance, and present the final standard error and interpolation surfaces. These layers have been archived in a common (raster) format at the Bedford Institute of Oceanography to facilitate future use. Based on the diagnostic summaries in this report, a subset of these variables has subsequently been used in species distribution models to predict the distribution of deep-water corals, sponges, and other significant benthic taxa in the Maritimes Region. Cite this data as: Beazley, Lindsay; Guijarro, Javier, Lirette; Camille; Wang, Zeliang; Kenchington, Ellen (2020). Characteristics of Environmental Data Layers for Use in Species Distribution Modelling in the Maritimes Region. Published July 2023. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/34a917cb-a0e3-403c-91c7-af3dc20628b1

  • Categories  

    In 2016-17, DFO Maritimes Region undertook a Marine Protected Area (MPA) network analysis for the Scotian Shelf-Bay of Fundy Bioregion. The analysis considered available bioregional-scale ecological and human use data in an effort to identify a draft MPA network design that would protect biodiversity while minimizing any potential impacts on commercial fishing and other industries. The data layers used for the offshore component of the MPA network analysis are provided here. These layers are not presented in their original forms and were modified (e.g. clipped, reclassified, etc.) specifically for use in the MPA network analysis. They should not be used for any other purpose. Please see Serdynska et al. 2021 for details on how each layer was created. Serdynska, A.R., Pardy, G.S., and King, M.C. 2021. Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion. Can. Tech. Rep. Fish. Aquat. Sci. 3382: xi + 100 p. https://publications.gc.ca/collections/collection_2021/mpo-dfo/Fs97-6-3382-eng.pdf Cite this data as: Serdynska, A.R., Pardy, G.S., and King, M.C. Data of: Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion. Published: January 2022. Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/2d9cce9a-d634-4b49-879f-87c40c52acf2

  • Categories  

    Effective fisheries and habitat management processes require knowledge of the distribution of areas of high ecological or biological significance. On the Scotian Shelf and Slope, a number of benthic ecologically or biologically significant areas consisting of habitat-forming species such as sponges and deep-water corals have been identified. However, knowledge of their spatial distribution is largely based on targeted surveys that are limited in their spatial extent. We used a species distribution modelling approach called random forest (RF) to predict the probability of occurrence and biomass of sponges, sea pens, and large and small gorgonian corals across the entire spatial extent of Fisheries and Oceans Canada’s (DFO) Maritimes Region. We also modelled the rare sponge Vazella pourtalesi, which forms the largest known aggregation of its kind on the Scotian Shelf. We utilized a number of data sources including DFO multispecies trawl catch data and in situ benthic imagery observations. Most models had excellent predictive capacity with cross-validated Area Under the Receiver Operating Characteristic Curve (AUC) values ranging from 0.760 to 0.977. Areas of suitable habitat were identified for each taxon and were contrasted against their known distribution and when applicable, the location of closure areas designated for their protection. Generalized additive models (GAMs) were developed to predict the biomass distribution of each taxonomic group and serve as a comparison to the RF models. The RF and GAM models provided comparable results, although GAMs provided superior predictions of biomass along the continental slope for some taxonomic groups. In the absence of data observations, the results of this study could be used to identify the potential distribution of sensitive benthic taxa for use in fisheries and habitat management applications. These results could also be used to refine significant concentrations of these taxa as identified through the kernel density analyses. Cite this data as: Beazley, Lindsay; Kenchington, Ellen; Murillo-Perez, Javier; Lirette, Camille; Guijarro-Sabaniel, Javier; McMillan, Andrew; Knudby, Anders (2019). Species Distribution Modelling of Corals and Sponges in the Maritimes Region for Use in the Identification of Significant Benthic Areas. Published July 2023. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/356e92f3-5bf3-4810-98b1-3e10cd7742aa

  • Categories  

    A benthic imagery survey was conducted along the Eastern Scotian Slope in June 2018 to collect data in support of a Strategic Program for Ecosystem-Based Research and Advice project to evaluate the effectiveness of the Lophelia Coral Conservation Area and identify new areas of importance for benthic species that may qualify for protection under Fisheries and Oceans Canada’s 2009 Policy for Managing the Impact of Fishing on Sensitive Benthic Areas. Linear video and photographic transects from ~200 to 1000 m depth were collected at 10 stations between the Gully Marine Protected Area and the Lophelia Coral Conservation Area using the video and photographic camera system Campod and the ‘4K Camera’ drop camera system. Here we present a quantitative assessment of the corals and sponges observed at each of these 10 stations. Patterns in distribution by transect and depth are presented, as well as the relationship between coral distribution and groundfish fishing effort. We highlight the importance of the slope outside the canyons for the distribution of corals and sponges, where nearly 25 taxa were recorded between 167 – 970 m depth. Diversity and abundance appeared to show a west-to-east gradient across the study area, being highest on those stations adjacent to the Lophelia Coral Conservation Area. Groundfish fishing activity overlapped the distribution of corals and sponges in some parts of the study area, particularly between 200 and 500 m where the large branching corals Paragorgia arborea and Primnoa resedaeformis were observed, and also suggested that fishing may have taken place within the boundaries of the Lophelia Coral Conservation Area since its implementation in 2004. An extension of the boundaries of this closure may ensure its continued effectiveness and provide protection for the diverse and abundant coral and sponge communities that reside beyond its boundaries. Cite this data as: Beazley, Lindsay; Lirette, Camille; Guijarro, Javier (2019). Characterization of the Corals and Sponges of the Eastern Scotian Slope from a Benthic Imagery Survey. Published July 2023. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/b6567b77-4fda-4fcf-b059-fcfeb4dcc2fb

  • Categories  

    The annual summer scallop surveys on the principal grounds in the Bay of Fundy follow stratified-random designs. The gear comprises a ‘Digby scallop drag’ with four ‘buckets’, each of 760 mm inside width, their bags being made of 74 mm steel-wire rings linked by rubber washers. A comparative data set of three scallop grounds (Digby, Lurcher Shoal and Grand Manan) was produced comprised of 190 stations sampled in 1997 and 213 from 2007–08. Presence/absence of a common suite of 68 benthic invertebrate taxa were recorded: 43 individual species, 20 additional genera and five higher taxa, all drawn from nine phyla. Each taxon was coded for each of seven biological traits (each with associated modalities), selected for their assumed relevance to environmental drivers. A score between 0 and 3 was assigned based on the literature for the taxon’s affinity to each modality, using ‘fuzzy coding’. Non-zero scores were assigned to as many modalities as required to represent the traits of the taxon’s adult stage. The resulting taxa x traits matrix, of 68 taxa by 27 modalities, is provided here along with the metadata for each station sampled. In addition, fourteen environmental variables, deemed relevant to benthic epifauna and representing both seabed sediments and the water column, were quantified for each survey station. Seabed depth, mean grain size, mean significant wave height, mean seabed shear stress, root mean square tidal current speed 1 m above the seabed and combined averaged wave-current shear velocity were each extracted from a sediment transport model for the Bay of Fundy prepared by Li et al. (2015). Mean values for current velocities, salinity and temperature for both surface and bottom layers, plus maximum mixed layer depth and bottom shear were each drawn from the Bedford Institute of Oceanography North Atlantic Model (BNAM: Wang et al., 2018). BNAM values averaged across 1990–2015 were used when examining faunal differences among survey areas, but explorations of temporal change used annual values for 1997 and 2007 individually. The variable nomenclature in the attached spreadsheet follows those of Li et al. (2015) and Wang et al. (2018). Results of the spatial and temporal analyses of these data are found in Staniforth et al. (2023). The values for each of the environmental variables are provided in the spreadsheet below. Their interpolated surfaces are also provided. Cite this data as: MacDonald, Barry; Staniforth, Calisa; Lirette, Camille; Murillo, Francisco; Kenchington, Ellen; Kenchington, Trevor (2023). Benthic Megafaunal Assemblages on Scallop Fishing Grounds in the Bay of Fundy (1997 and 2007). Published May 2024. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/935836da-a565-4f1e-806e-d354d8db252c

  • Categories  

    These are derived products of ocean bottom temperature at St. Anns Bank Marine Protected Area (MPA), utilizing outputs from two numerical models: 1) Pseudo-analysis from the Coastal Ice-Ocean Prediction System for the East Coast of Canada (CIOPS-E v2.0.0) at 1/36° horizontal grid developed and implemented operationally at Environment and Climate Change Canada, covering 2016-2023 through combining research and operational runs from this system (https://eccc-msc.github.io/open-data/msc-data/nwp_ciops/readme_ciops_en/); 2) The Global Ocean Physics Reanalysis (GLORYS12v1), a 1/12° data assimilative reanalysis product produced by the Mercator Ocean International and implemented by the CMEMS, spanning from 1993 to 2023 ( https://doi.org/10.48670/moi-00021). The daily bottom temperature data presented here are calculated as daily area averages. The ocean bottom temperature data from the model available here are validated against in-situ observations from the open data (https://open.canada.ca/data/en/dataset/910b8e22-2fd1-4ba1-8db6-d16763c7a625). These products may be used to gain knowledge of ocean bottom temperature changes in the MPA over the past 8 and 30 years. Cite this data as: Casey, M., Hu, X, Tao, J., and Shen, H. Ocean Bottom Temperature Variations from CIOPS-E and GLORYS12 Models at St. Anns Bank. Published: August 2024. Ecosystems and Oceans Science, Maritimes region, Fisheries and Oceans Canada, Dartmouth NS. https://open.canada.ca/data/en/dataset/019f9138-6e3c-4f0e-997e-879e1ec2c42d

  • Categories  

    Estimates of wind-driven upwelling of colder water on the Scotian Shelf along the Nova Scotia coastline from 1993 to 2022 (inclusive) are presented, calculated using surface and 55m-depth water temperatures from the Global Ocean Physics Reanalysis (GLORYS12v1) product, and also ERA5 surface winds. GLORYS12v1 is a 1/12o data-assimilative reanalysis modelling product from Mercator Ocean International, implemented by the Copernicus Marine Environment Monitoring Service (CMEMS; (https://doi.org/10.48670/moi-00021). ERA5 is a weather forecast produced by the European Centre for Medium-Range Weather Forecasts (ECMWF; https://doi.org/10.24381/cds.adbb2d47). Daily estimates are given of upwelling area and intensity (temperature anomaly between upwelled and non-upwelled water), calculated over the area of interest (AOI) on the Scotian Shelf. Yearly estimates are given of total upwelling duration and cumulative area for the year in question, further broken down into seasons: Spring (March-May), Summer (June-August), and Fall (September-November). Lastly, estimates of the yearly start/end dates of the cold-water upwelling season (lasting generally from March to November) are estimated. The sea surface temperature (SST) data from GLORYS were validated against in-situ buoy observations (https://www.meds-sdmm.dfo-mpo.gc.ca/alphapro/wave/waveshare/metaData/meta_c44258.csv) and satellite-derived SST produced by Canadian Meteorological Centre (https://doi.org/10.5067/GHCMC-4FM02 and https://doi.org/10.5067/GHCMC-4FM03. These products may be used to gain knowledge of interannual variability of coastal upwelling on the ScS over the past 30 years. Cite this data as: Tao, J., Casey, M., Lu, Y., and Shen, H. Upwelling indices derived from GLORYS12 Model and ERA5 surface wind on the Scotian Shelf during 1993-2022. Published: December 2024. Ecosystems and Oceans Science, Maritimes region, Fisheries and Oceans Canada, Dartmouth NS. https://open.canada.ca/data/en/dataset/a2da6bfd-92e3-434e-b9bd-456b7fc9e92b

  • Categories  

    Temperature logger data was collected from two Vemco miniloggers attached to range-testing moorings for an array of acoustic receivers at a depth of approximately 300 metres in the Gully MPA. The data covers 2021 through 2022. Cite this data as: Jeffery, N., Heaslip, S., and Stanley, R. Data of: Benthic temperature data from the Gully MPA. Published: June 2023. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/900c02b2-7eb7-48e3-8b3e-c3e65c99a8e6

  • Categories  

    In 2012 and 2013, Fisheries and Oceans Canada surveyed the benthos in two areas closed to bottom contact fishing, the Narwhal Overwintering and Coldwater Coral Zone (now the Disko Fan Conservation Area, DFCA), and the Hatton Basin Voluntary Coral Protection Zone (now the Hatton Basin Conservation Area, HBCA). Samples were collected following protocols recommended by the Arctic Council’s Circumpolar Biodiversity Monitoring Plan for the purposes of providing baseline data for future monitoring of benthic invertebrates in this sensitive region, and for facilitating pan-Arctic comparisons of benthic communities. Five biodiversity monitoring stations were established, four in the DFCA and one in the HBCA, each of which was fully sampled according to those protocols with Van Veen grabs or box corers, drop cameras and temperature recorders attached to the gear. This report summarises the grab/core-sampled benthic fauna collected during the 2012 survey of the Conservation Areas and complements another report documenting the epibenthos from the camera transects in the DFCA. Here we report on macrofauna in the 1-cm size fraction, and on foraminiferan meiofauna. The data provided is presented in the following report (see related link) : Jacobs, K., Bouchard Marmen, M., Rincón, B., MacDonald, B., Lirette, C., Gibb, O., Treble, M., and Kenchington, E. 2022. Biodiversity Monitoring Stations for Benthic Macrofauna and Meiofauna in the Disko Fan and Hatton Basin Conservation Areas. Can. Tech. Rep. Fish. Aquat. Sci. 3487: vi + 86 p. Cite this data as: Bouchard Marmen, Marieve; Rincon, Beatriz ; MacDonald, Barry; Lirette, Camille; Gibb, Olivia; Treble, Margaret ; Jacobs, Kevin; Kenchington, Ellen (2022). Biodiversity Monitoring Stations for Benthic Macrofauna and Meiofauna in the Disko Fan and Hatton Basin Conservation Areas. Published January 2023. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/b7bcff18-698b-4d40-a7bd-13d39925cbeb