Keyword

Biota

817 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
From 1 - 10 / 817
  • Categories  

    Deep arctic sponge aggregations. This habitat can be described as a type of deep-sea sponge aggregation (sensu OSPAR 2010) occurring only in the deeper, colder water (Arctic modified, and Norwegian Sea Deep Water), where glass sponges (class Hexactinellida) are typical and other strictly deep-sea sponges are common. One of the most common species of glass sponge is the Caulophacus arcticus, which is generally found on hard sea bottoms on the lower part of the continental slope.

  • Categories  

    Species Distribution Models (SDM) were used to predict and identify priority areas for enhanced monitoring of cetaceans in eastern Canadian waters off Nova Scotia, Newfoundland and Labrador. This data set represents information presented in Gomez et al. (2020) and includes sighting records and SDM outputs for ten cetacean species with sufficient records (n > 450) and sightings only for an additional six species. For more information about sighting records including which were included in each SDM, please see Gomez et al. 2020. This study used a compilation of aerial- and vessel-based cetacean sightings data from 1975-2015 assembled in Gomez et al. (2017) from variety of sources. Note that sightings data from many of these sources are not effort-corrected and apparent distribution patterns based on these opportunistic sightings data are biased by when and where survey activities were conducted. Unfavorable weather and reduced visual effort in winter, spring, and autumn likely account for the fewer sighting records in these seasons compared to summer. The dataset does not include dead animal, stranding, entanglement or entrapment data. While some of the databases include records obtained during the whaling period (catches or sightings recorded prior to 1975), for all analyses/modelling conducted in this study, only sightings of free-swimming whales obtained during the post-whaling period (1975-2015) were used. Quality control checks included discarding all records outside of our study area and removing redundant records (identical species, day, month, latitude and longitude).The data used do not reflect any updates or corrections to the databases that have occurred since the data were compiled in 2016. Sightings are not available for download here, please contact the original data sources listed below to obtain raw sightings data. This study represents an important initiative in eastern Canada to highlight key areas for cetacean monitoring in waters off Nova Scotia, Newfoundland and Labrador. Habitats with high suitability are interpreted as areas where cetacean monitoring efforts may be prioritized, and results can help direct future survey efforts. These model outputs used cetacean sightings from several decades and dynamic environmental predictors that used seasonal averages across multiple years. As proxies for prey availability, five predictor environmental variables were selected for the SDM: ocean depth, compound topographic index, sea surface temperature, areas of persistently high chlorophyll-a concentration, and regional chlorophyll-a magnitude. See Gomez et al. (2020) for further details on modelling methods. Persistent patterns over time (between 1975-2015) are the main patterns expected to be captured by these models. Further, SDM results presented here are not the same as species density maps; rather, they portray predicted suitable habitat based on environmental characteristics and sightings data that were not always derived from effort-based surveys. Consequently, the use of these models in marine spatial planning processes should be accompanied by complimentary approaches such as acoustic and visual validation of the SDM results as well as additional monitoring and modeling efforts. Please refer to Gomez et al. (2020) for examples on how to best use these data outputs. Future efforts will focus on using more recent data and improving these models to facilitate the inclusion of cetaceans in marine spatial planning processes that are currently underway. Data sources: Fisheries and Oceans Canada Maritimes region and Newfoundland and Labrador region (Whale Sightings Database, Ocean and Ecosystem Sciences Division, Dartmouth, NS; http://www.inter.dfo-mpo.gc.ca/Maritimes/SABS/popec/sara/Database, MacDonald et. al. 2017) Ocean Biogeographic Information System (OBIS; http://www.iobis.org/), North Atlantic Right Whale Consortium (NARWC; http://www.narwc.org/) Whitehead Lab at Dalhousie University (http://whitelab.biology.dal.ca/) Environment and Climate Change Canada’s (Canadian Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) program (Gjerdrum et al. 2012). References: Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. Fish. Aquat. Sci. 3370: vi + 103 p. http://waves-vagues.dfo-mpo.gc.ca/Library/40869155.pdf Gomez C, Lawson J, Kouwenberg A, Moors-Murphy H, Buren A, Fuentes-Yaco C, Marotte E, Wiersma YF, Wimmer T. 2017. Predicted distribution of whales at risk: identifying priority areas to enhance cetacean monitoring in the Northwest Atlantic Ocean. Endangered Species Research 32:437-458 https://www.int-res.com/abstracts/esr/v32/p437-458/ Gjerdrum, C., D.A. Fifield, and S.I. Wilhelm. 2012. Eastern Canada Seabirds at Sea (ECSAS) standardized protocol for pelagic seabird surveys from moving and stationary platforms. 31 Canadian Wildlife Service Technical Report Series No. 515. Atlantic Region. vi + 37 p. MacDonald, D., Emery, P., Themelis, D., Smedbol, R.K., Harris, L.E., and McCurdy, Q. 2017. Marine mammal and pelagic animal sightings (Whalesightings) database: a user’s guide. Can. Tech. Rep. Fish. Aquat. Sci. 3244: v + 44 p.

  • Categories  

    The Coastal Oceanography and Ecosystem Research section (DFO Science) reviewed the presence of Lobster in the Population Ecology Division (DFO Science) Ecosystem Survey trawls to describe the likelihood of presence. The survey consists of a stratified random design using a bottom trawl. Lobsters are found in few trawls in the Bay of Fundy and Port Hawkesbury Area Response Plan regions, however Lobsters are landed in nearshore areas. Therefore, lobsters are described as being likely present throughout the ARP. This layer was created for consideration in oil spill response planning. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of American Lobster in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/47bf4555-ce3c-492f-a367-a6eab1862970

  • Categories  

    Kernel density estimation (KDE) utilizes spatially explicit data to model the distribution of a variable of interest. It is a simple non-parametric neighbour-based smoothing function that relies on few assumptions about the structure of the observed data. It has been used in ecology to identify hotspots, that is, areas of relatively high biomass/abundance, and in 2010 was used by Fisheries and Oceans Canada to delineate significant concentrations of corals and sponges. The same approach has been used successfully in the Northwest Atlantic Fisheries Organization (NAFO) Regulatory Area. Here, we update the previous analyses with the catch records from up to 5 additional years of trawl survey data from Eastern Canada, including the Gulf of Saint Lawrence. We applied kernel density estimation to create a modelled biomass surface for each of sponges, small and large gorgonian corals, and sea pens, and applied an aerial expansion method to identify significant concentrations of these taxa. We compared our results to those obtained previously and provided maps of significant concentrations as well as point data co-ordinates for catches above the threshold values used to construct the significant area polygons. The borders of the polygons can be refined using knowledge of null catches and species distribution models of species presence/absence and/or biomass.

  • Categories  

    Likelihood of Presence of Bottlenose Whales in the Bay of Fundy and the Port Hawkesbury Area Response Plan. The Coastal Oceanography and Ecosystem Research section (DFO Science) reviewed reported opportunistic whale sightings and local knowledge sources to estimate areas where Northern Bottlenose Whales are seasonally present and delineate these areas. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Bottlenose Whale in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/29dd835b-7c96-4c62-b558-275dfe13cbe9

  • Categories  

    The objective of the study was to describe the spatial distribution of krill in eastern Canadian waters using a statistical modelling approach in support of the identification of important habitat for the western North Atlantic (WNA) blue whale (Balaenoptera musculus). Generalized Additive Models (GAMs) were used to predict ‘Significant Aggregations of Krill’ (SAK), i.e., areas where dense krill aggregations would have a greater probability of occurring. SAK cover less than 2% of the entire spatial domain and their location varied among krill categories and seasons. These SAK are interpreted as areas where environmental conditions promote krill aggregation on a regular basis and therefore are potentially important for WNA blue whale foraging in eastern Canadian waters. Plourde, S., Lehoux, C., McQuinn, I.H., and Lesage, V. 2016. Describing krill distribution in the western North Atlantic using statistical habitat models. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/111. v + 34 p.

  • Categories  

    These data consist of the Recreational Shark Fishing Tournament landings database (1993-2022 inclusive) and the Canadian Dart tag database (2006 onwards; updated annually). Both were collected by the Maritimes Science Division of Fisheries and Oceans Canada. The landings records include biological sampling from 4266 animals and the dart tag records include 4138 tagging and 97 recapture events to date. Potential users should consult Bowlby et al. (2022) for the description, management history, and technical details pertaining to these data. Information is focused on Blue Sharks because they were the primary species captured at recreational tournaments. Cite this data as: Bowlby, H., Joyce, W. Recreational Shark Fishing Tournament Landings Data and Canadian Dart Tag Database. Published January 2023 . Population Ecology Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/4309f1f7-6779-416d-9660-c02f0f99b482

  • Categories  

    Likelihood of Presence of Grey Seal in the Bay of Fundy and Port Hawkesbury Area Response Plan. The Coastal Oceanography and Ecosystem Research section (DFO Science) reviewed reported opportunistic sightings and local knowledge sources to estimate areas where Grey Seals are present and delineated these areas. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Grey Seal in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/e73c90ff-0ab6-4257-8d6d-3dfc46fc0dc5

  • Categories  

    The National Ecological Framework for Canada's "Surface Material by Ecodistrict” dataset provides surface material information within the ecodistrict framework polygon. It provides surface material codes and their English and French language descriptions as well as information about the percentage of the polygon that the component occupies. Surface material includes the abiotic material at the earth's surface. The materials can be: ICE and SNOW - Glacial ice and permanent snow ORGANIC SOIL - Contains more than 30% organic matter as measured by weight ROCK - Rock undifferentiated MINERAL SOIL - Predominantly mineral particles: contains less than 30% organic matter as measured by weight URBAN - Urban areas. Note that only a few major urban area polygons are included on SLC source maps, therefore, do not use for tabulating total urban coverage.

  • Categories  

    Atlantic salmon postsmolts were surveyed via surface trawling during 2001 and 2003. These data were provided to the Coastal Oceanography and Ecosystem Research section of Fisheries and Oceans Canada. These data, and information from subsequent tagging studies were considered to estimate the likelihood of presence of Atlantic salmon within the Area Response Plan regions. Atlantic salmon presence varies seasonally and this spatial information should be used in conjunction with the temporal information in the attribute table. A version of this dataset was created for the National Environmental Emergency Center (NEEC) following their data model and is available for download in the Resources section. Cite this data as: Lazin, G., Hamer, A.,Corrigan, S., Bower, B., and Harvey, C. Data of: Likelihood of presence of Atlantic Salmon in Area Response Planning pilot areas. Published: June 2018. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. https://open.canada.ca/data/en/dataset/436cdf90-9d6b-4784-938b-feec48844a67