Water column temperature and salinity
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
-
Gridded fields of salinity for 50 N - 67 N, 41,5 W - 61,5 W geographic region (yearly, 2000 - 2016), 29 standard depths
-
This dataset is included the following parameters: water temperature, sound velocity in the water body .
-
We report continuous observations in the high Arctic (north of 84°N) over the full 2013 summer season at two nearby sites with distinct initial snow depth, ice thickness and altitude with respect to the local ice topography. The two sites subject to similar atmospheric conditions that did not favor strong ice melt showed a contrasted evolution. One site, with an initial thin sea ice (1.40 m) at a low location of the floe, witnessed the formation of a spectacular 1.20 m-deep melt pond, a pond-enhanced erosion of the ice surface and a sudden pond drainage into the ocean. Then, the outpoured fresh water rapidly froze, heated the old ice from below and also acted as a temporary shield from the ocean heat flux while it was progressively ablated through dissolution. Eventually, the site almost recovered its initial ice thickness. In contrast, the other site, with an initial thicker sea ice (1.75 m) at a high location of the floe, did not support any significant melt water and underwent over 0.5 m of continuous basal ablation. The two sites witnessed formation of superimposed and interposed ice. Sea-ice survived summer melt at the two sites which entered the refreezing season with similar snow and ice thicknesses. For the first time, processes associated with the formation of a deep melt pond and subsequent false bottom evolution are continuously documented with ice mass balance instruments. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Profiles collected during the cruise GLICE on RV Sanna (August 2022) in Disko Bay
-
A mooring, equipped with a CTD sensor (SBE37) at 350 m depth, was deployed in the Yermak Pass on the 24 September 2017 from the R/V Lance. The mooring was recovered in summer 2020 from K/V Svalbard. The present dataset provides 10-day smoothed time series of daily conservative temperature (CT, °C), absolute salinity (SA, g/kg) and pressure (db) recorded by the SBE37 sensor, from the 24 September 2017 to the 31 May 2020. The mooring was located at 80.63°N, 6.88°E. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
We defined the interfaces between the air/snow, snow/ice, and ice/ocean and calculated the ocean heat flux for two SIMBA recordings (SIMBA2015a and SIMBA_2015f) of repeated temperature profiles at 6h interval and 2cm vertical resolution, during N-ICE 2015 experiment floe1. The snow/ice interface is derived from the sharp contrast in the diffusivity proxy values between both media. The snow/ice interface does not change except for slush formation associated with flooding events. The air/snow interface is calculated using simultaneous information from the vertical gradient of the temperature and the standard deviation over 24, 48, and 72 h period. Snow accumulation of more than 10 centimeters happened at different time for the 2 SIMBA. The ice/ocean interface is estimated from temperature profiles alone since the winter sea-ice remains colder than the ocean. The ocean just below the ice is at or just above the freezing temperature (estimated from a near surface conductivity-temperature-depth (CTD) sensor see Koenig et al. [2016]). The method detects (1) the first sensor, downward of the snow/ice interface, with a temperature above the ocean freezing temperature and (2) the last sensor in the ice with a temperature below the mean ocean temperature by at least twice the ocean temperature standard deviation in that profile. The ice/ocean interface is then defined as half way between the last sensor in the ice and the first sensor in the ocean. Note it take 3-4 days for the deployment hole to refreeze. Then the ice thickness remains constant up to 20 February when floe1 breaks. Simba_2015f stops working and SIMBA_2015a features basal melt events corresponding to temperature changes in the ocean. The consistency of the 3 interfaces estimate is validated with the thermal diffusivity proxy and the vertical and temporal derivatives of temperature. The ocean heat flux is derived from the latent heat flux which is directly proportional to the change in time of the ice/ocean interface depth and the conductive heat flux in the lower portion of the ice estimated 6 cm above the ice/ocean interface. The ocean heat flux values for SIMBA_2015a and SIMBA2015f range from -50 to 350 W/m2, and -50 to 150 W/m2 respectively, while the basal melt events associated with ocean temperature increase stand out in SIMBA_2015a. The SIMBA data are available through the Norwegian Polar Institute’s data center (https://data.npolar.no/dataset/6ed9a8ca-95b0-43be-bedf-8176bf56da80) and the method of interface detection is thoroughly described in Provost et al. (2017). Note that all time series have been smoothed with a 36-h running mean. Provost, C., N. Sennechael, J. Miguet, P. Itkin, A. Rosel, Z. Koenig, N. Villacieros-Robineau, and M. A. Granskog (2017), Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N-ICE2015 campaign: Influence of basal ice melt and storms, J. Geophys. Res. Oceans, 122, 7115–7134, doi:10.1002/2016JC012011. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
This dataset is included the following parameters: water temperature, salinity,air temperature,visibility (code). Research vessel:"Mikhail Somov".
-
The cruise HM 2015617 onboard the Research Vessel Håkon Mosby is the second and last research cruise of the project ”On Thin Ice (NICE): Role of Ocean Heat Flux in Sea Ice Melt”. NICE is led at the Geophysical Institute, University of Bergen (PI: Ilker Fer) and is funded by the Research Council of Norway (project number 229786) for the period 01.01.2014-31.12.2017
-
Results of measurements of the CO2 flow from water from various depths using the bathometers of the oceanographic station No. 69 on the 26th cruise of the research vessel "Akademik Fedorov" Numerical results of measurements of the IR gas analyzer. Parameter:chamber temperature,atmospheric pressure inside the optical element of the gas analyzer,concentration of water vapor inside the chamber, CO2 concentration inside the chamber, CO2 concentration inside the chamber, corrected for water vapor, relative humidity inside the chamber, water salinity by bathometer, water sampling temperature by bathometer, water temperature before measurements, water temperature after measurements.
-
Surface Ocean CO2 Atlas (SOCAT)