Topic
 

Oceans

41 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
From 1 - 10 / 41
  • Categories  

    Basic biogeochemical parameters obtained from the GLICE cruise in Disko Bay (August 2022), either analyzed at sea or preserved and returned to GEOMAR for analysis.

  • Categories  

    Meteorological data of the R/V "Mikhail Somov" in the Arctic. This dataset is included the following meteorological parameters:Wind Speed,Wind Direction,Visibility,Total Clouds Cover,Air Temperature,Sea Level Pressure,Pressure Tendency,Amount of Pressure Tendency,Present Weather,Height of Wind Waves.

  • Categories  

    In the Northwest Atlantic, Pandalus borealis (northern shrimp) serve as key mid-trophic consumers and prey for higher-trophic predators, including commercially important fish species. However, the impact of changing environmental conditions on trophic interactions and lipid storage in sub-Arctic ecosystems is not well understood. We employed biochemical tracers (fatty acids and stable isotopes) to investigate the trophic ecology and stage-specific nutritional condition of P. borealis across spatial and seasonal scales. A total of 68 different fatty acids (FAs) were identified in P. borealis tissues (i.e., muscle and eggs). The relative abundances of these FAs varied among sex, tissues, seasons, and fishing areas. Results revealed that P. borealis primarily fed on diatoms and zooplankton, with opportunistic feeding on sinking phytodetritus. Lipid composition showed strong seasonality, with storage triacylglycerols being the predominant lipid class. Ovigerous females exhibited the highest lipid concentrations and essential fatty acids, emphasizing the ecological importance of eggs as high-quality lipid sources. Additionally, total lipid content in eggs increased from spring to summer, highlighting vulnerability to shifts in seasonal primary production. This study underscores the significant seasonal variability in the nutritional status of P. borealis and the need to understand lipid dynamics to assess population resilience to environmental changes. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Categories  

    The tasks of the expedition: - conducting complex hydrometeorological observations in the spring-summer period in the Arctic basin of the Arctic Ocean; - obtaining data on the morphometry of the ice cover, the physical and mechanical properties of ice; - study of hydrometeorological and oceanographic conditions.

  • Categories  

    The Green Edge project was designed to investigate the onset, life and fate of a phytoplankton spring bloom (PSB) in the Arctic Ocean. The lengthening of the ice-free period and the warming of seawater, amongst other factors, have induced major changes in arctic ocean biology over the last decades. Because the PSB is at the base of the Arctic Ocean food chain, it is crucial to understand how changes in the arctic environment will affect it. Green Edge was a large multidisciplinary collaborative project bringing researchers and technicians from 28 different institutions in seven countries, together aiming at understanding these changes and their impacts on the future. The fieldwork for the Green Edge project took place over two years (2015 and 2016) and was carried out from both an ice camp and a research vessel in the Baffin Bay, Canadian arctic. Here, we describe the data set obtained during the research cruise, which took place aboard the Canadian Coast Guard Ship (CCGS) Amundsen in spring 2016. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Categories  

    We report continuous observations in the high Arctic (north of 84°N) over the full 2013 summer season at two nearby sites with distinct initial snow depth, ice thickness and altitude with respect to the local ice topography. The two sites subject to similar atmospheric conditions that did not favor strong ice melt showed a contrasted evolution. One site, with an initial thin sea ice (1.40 m) at a low location of the floe, witnessed the formation of a spectacular 1.20 m-deep melt pond, a pond-enhanced erosion of the ice surface and a sudden pond drainage into the ocean. Then, the outpoured fresh water rapidly froze, heated the old ice from below and also acted as a temporary shield from the ocean heat flux while it was progressively ablated through dissolution. Eventually, the site almost recovered its initial ice thickness. In contrast, the other site, with an initial thicker sea ice (1.75 m) at a high location of the floe, did not support any significant melt water and underwent over 0.5 m of continuous basal ablation. The two sites witnessed formation of superimposed and interposed ice. Sea-ice survived summer melt at the two sites which entered the refreezing season with similar snow and ice thicknesses. For the first time, processes associated with the formation of a deep melt pond and subsequent false bottom evolution are continuously documented with ice mass balance instruments.  Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Categories  

    Two ice mass balance instruments (part of IAOOS7 and IAOOS8 platforms) deployed near 83°N on the same ice floe, documented the evolution of snow and ice conditions in the Arctic Ocean north of Svalbard in Jan-Mar 2015. Frequent profiles of temperature (every 3 hours) and temperature change after 30s and 120s heating (once a day) were recorded. The ratio of the temperature changes after heating provides a proxy for thermal diffusivity. Both instruments documented flooding and snow-ice formation. Flooding was clearly detectable in the simultaneous changes in thermal diffusivity proxy, increased temperature, and heat propagation through the underlying ice. Slush then progressively transformed into snow-ice. Flooding resulted from two different processes; i) after storm-induced break-up of snow-loaded floes for IAOOS8 and ii) after loss of buoyancy due to basal ice melt for IAOOS7. The instrument on IAOOS7 documented basal sea-ice melt over warm Atlantic waters and ocean-to-ice heat flux peaked at up to 400 Wm-2 in winter. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Categories  

    The two platforms IAOOS 23 and IAOOS 24 were deployed within 600 m from each other at the North Pole from the Russia-operated Barneo ice camp on April 12, 2017. They followed a meandering trajectory, reaching as far as 30°E in the Nansen Basin, before turning back to the western Fram Strait. On both IAOOS 23 and 24, the ocean profiler was a PROVOR SPI (from French manufacturer NKE) equipped with a Seabird SBE41 CTD (Conductivity, Temperature, Depth) and a dissolved oxygen (DO) Aandera 4330 optode. For the first time, the profiler on IAOOS 23 also carried biogeochemical sensors. It featured a bio-optics sensor suite and a submersible ultraviolet nitrate analyzer (SUNA, Satlantic-Seabird Inc.). The bio-optics sensor suite (called Pack Rem A) combines a three-optical-sensor instrument (ECO Triplet, WET Labs Inc.) and a multispectral radiometer (OCR-504, Satlantic Inc.). The present dataset is composed of CTD-DO data from IAOOS 23 and 24, corrected from the thermal lag and the sensor lag, despiked and interpolated vertically every 0.5 m. It also comprises nitrate concentrations from the SUNA and CDOM fluorescence from the WETLabs ECO sensor on IAOOS 23. Other biogeochemical data will be added to this dataset. The profilers were set to perform two upward profiles a day from 250 m (IAOOS 23) and 350 m (IAOOS 24) upward starting at approximately 6 am and 6 pm. They provided a unique 8-month long dataset, gathering a total of 793 profiles of the temperature, salinity and oxygen (upper 350m) and 427 profiles of CDOM and nitrates concentrations (upper 250m).   Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.

  • Categories  

    Results of measurements of the CO2 flow from water from various depths using the bathometers of the oceanographic station No. 67 on the 26th cruise of the research vessel "Akademik Fedorov" Numerical results of measurements of the IR gas analyzer. Parameter:chamber temperature,atmospheric pressure inside the optical element of the gas analyzer,concentration of water vapor inside the chamber, CO2 concentration inside the chamber, CO2 concentration inside the chamber, corrected for water vapor, relative humidity inside the chamber, water salinity by bathometer, water sampling temperature by bathometer, water temperature before measurements, water temperature after measurements.

  • Categories  

    Measurements data on "North Pole-36" station.This dataset is included the following hydrology parameters:temperature,salinity,density. Meteorological parameters: wind direction,wind speed,air temperature,visibility,air pressure,humidity,cloud cover,cloud cover of the form,ice:type,ice:form,ice:concentration.