Oceans
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
-
The mooring was deployed on 15 September 2017 from Norwegian Research Vessel Lance at 80.6°N and 7.26°E (depth of 730 m) in the Yermak Pass over the Yermak Plateau north of Svalbard. It comprised 3 instruments: an upward-looking RDI 75kHz, a Long Ranger Acoustic Doppler Current Profiler (ADCP) at 340 m with 16 m vertical resolution (25 bins of 16 m each) and a 2-hour sampling time; a Seabird SBE37 measuring temperature, salinity and pressure at 348 m with 10-minute sampling time; and an Aquadopp current meter at 645 m with a 2-hour sampling time. The mooring was retrieved on the 19 July 2020 by Norwegian Icebreaker K.V. Svalbard. The present dataset features: (i) the ADCP 50-hour smoothed daily velocities, conservative temperature and pressure time series interpolated every 10 meters within the 20-330m layer, (ii) the Aquadopp 50-hour smoothed daily velocities and pressure time series at 645 m; and (iii) the SBE37 50-hour smoothed daily conservative temperature, absolute salinity and pressure time series at 348 m. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
We defined the interfaces between the air/snow, snow/ice, and ice/ocean and calculated the ocean heat flux for two SIMBA recordings (SIMBA2015a and SIMBA_2015f) of repeated temperature profiles at 6h interval and 2cm vertical resolution, during N-ICE 2015 experiment floe1. The snow/ice interface is derived from the sharp contrast in the diffusivity proxy values between both media. The snow/ice interface does not change except for slush formation associated with flooding events. The air/snow interface is calculated using simultaneous information from the vertical gradient of the temperature and the standard deviation over 24, 48, and 72 h period. Snow accumulation of more than 10 centimeters happened at different time for the 2 SIMBA. The ice/ocean interface is estimated from temperature profiles alone since the winter sea-ice remains colder than the ocean. The ocean just below the ice is at or just above the freezing temperature (estimated from a near surface conductivity-temperature-depth (CTD) sensor see Koenig et al. [2016]). The method detects (1) the first sensor, downward of the snow/ice interface, with a temperature above the ocean freezing temperature and (2) the last sensor in the ice with a temperature below the mean ocean temperature by at least twice the ocean temperature standard deviation in that profile. The ice/ocean interface is then defined as half way between the last sensor in the ice and the first sensor in the ocean. Note it take 3-4 days for the deployment hole to refreeze. Then the ice thickness remains constant up to 20 February when floe1 breaks. Simba_2015f stops working and SIMBA_2015a features basal melt events corresponding to temperature changes in the ocean. The consistency of the 3 interfaces estimate is validated with the thermal diffusivity proxy and the vertical and temporal derivatives of temperature. The ocean heat flux is derived from the latent heat flux which is directly proportional to the change in time of the ice/ocean interface depth and the conductive heat flux in the lower portion of the ice estimated 6 cm above the ice/ocean interface. The ocean heat flux values for SIMBA_2015a and SIMBA2015f range from -50 to 350 W/m2, and -50 to 150 W/m2 respectively, while the basal melt events associated with ocean temperature increase stand out in SIMBA_2015a. The SIMBA data are available through the Norwegian Polar Institute’s data center (https://data.npolar.no/dataset/6ed9a8ca-95b0-43be-bedf-8176bf56da80) and the method of interface detection is thoroughly described in Provost et al. (2017). Note that all time series have been smoothed with a 36-h running mean. Provost, C., N. Sennechael, J. Miguet, P. Itkin, A. Rosel, Z. Koenig, N. Villacieros-Robineau, and M. A. Granskog (2017), Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N-ICE2015 campaign: Influence of basal ice melt and storms, J. Geophys. Res. Oceans, 122, 7115–7134, doi:10.1002/2016JC012011. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Results of measurements of the CO2 flow from water from various depths using the bathometers of the oceanographic station No. 69 on the 26th cruise of the research vessel "Akademik Fedorov" Numerical results of measurements of the IR gas analyzer. Parameter:chamber temperature,atmospheric pressure inside the optical element of the gas analyzer,concentration of water vapor inside the chamber, CO2 concentration inside the chamber, CO2 concentration inside the chamber, corrected for water vapor, relative humidity inside the chamber, water salinity by bathometer, water sampling temperature by bathometer, water temperature before measurements, water temperature after measurements.
-
This dataset is included the following parameters: water temperature, salinity,air temperature,visibility (code). Research vessel:"Mikhail Somov".
-
Mooring data at Yermak Pass from September 2017 to July 2020 : raw and 50 hr high pass filtered data
The mooring was deployed on 15 September 2017 from Norwegian Research Vessel Lance at 80.6°N and 7.26°E (depth of 730 m) in the Yermak Pass over the Yermak Plateau north of Svalbard. It comprised 3 instruments: an upward-looking RDI 75kHz, a Long Ranger Acoustic Doppler Current Profiler (ADCP) at 340 m with 16 m vertical resolution (25 bins of 16 m each) and a 2-hour sampling time; a Seabird SBE37 measuring temperature, salinity and pressure at 348 m with 10-minute sampling time; and an Aquadopp current meter at 645 m with a 2-hour sampling time. The mooring was retrieved on the 19 July 2020 by Norwegian Icebreaker K.V. Svalbard. The present dataset features: The ADCP 50-hour high pass filtered velocities and the Aquadopp 50-hour high pass filtered velocities. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
We gathered ocean profiles during the first two floes of the N-ICE2015 ice camp north of Svalbard with IAOOS ocean profilers. Between January and March 2015, four ocean profilers were deployed: two below a full IAOOS platform (500 m long cable) during floe 1, two on an 800 m long instrumented line in a tent-covered testing-hole during floe1 and floe 2. The ocean profilers, from French manufacturer NKE (PROVOR SPI), carried a Seabird SBE41CP CTD (Conductivity, Temperature, Depth) with an Aanderaa 4330 optode for dissolved oxygen (DO). The profilers were set to perform two profiles a day from 500 m upward (800 m from testing hole) starting at 6 am and 6 pm. They provided the first winter data in the region with a total of 138 profiles during floe 1 (January 15- February 21) with 62, 50, and 26 profiles for IAOOS7, IAOOS8, and IAOOS 9, respectively and 16 profiles during floe 2 (February 24 - March 19- IAOOS 11 from testing hole). Following quality control, we retain all the temperature profiles and remove 1% of the salinity profiles. Finally, the accuracy is estimated to be 0.002°C in temperature, and 0.02 g/kg in salinity. Several profiles are missing or incomplete because of high drift speeds (> 0.4 m s-1) impeding the ascent of the profiler. There are no bottle DO measurements during Floe 1 to calibrate the DO data. DO accuracy is estimated comparing the deep values of DO concentration (rather stable at 500m) between the three profilers. A difference of 3 µmol L-1 is observed between IAOOS 8 and 9, and IAOOS 7. An offset of 3 µmol L-1 is then applied to the oxygen data from IAOOS7 and the accuracy of the data is estimated to be at ±3 µmol L-1. The vertical resolution of the processed CTD data is 1 dbar in the upper 400 dbars, 5 dbars from 400 to 550 dbars and 10 dbars from 550 to 850 dbars. The vertical resolution in dissolved oxygen is 2 dbars over all depths. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
-
Measurement data on the "Rossiya" icebreaker.This dataset is included the following parameters:temperature of water,salinity,dencity.Additionally, meteorological data are presented:wind speed,wind direction, air temperature, visibility.
-
Data of the 27th cruise of the research vessel "Akademik Fyodorov ".
-
Surface Ocean CO2 Atlas (SOCAT)
-
This data set includes CTD-O2 and LADCP data from the 46 stations occupied in Storfjorden and Storfjordrenna during the STEP cruise in July 2016 onboard R/V l'Atalante. Hydrographic data are provided in the form of Seabird ascii format (cnv), with two files per station (up and down). The data set also includes underway S-ADCP data provided in netcdf format. Sensor metadata: CTD data were collected with a Seabird SBE 911+ probe. Dissolved oxygen data were collected with a Seabird SBE43 probe attached to the rosette. Additional data include fluorescence (Chelsea Aqua3) and transmission (WET labs C-Star).LADCP data were collected with a pair of 300 kHz Workhorse Sentinel from RD Instruments mounted on the rosette. Shipborne-ADCP data were collected with the 150 kHz Ocean Surveyor (RD Instruments) mounted on the hull of R/V L'Atalante. Important Note: This submission has been initially submitted to SEA scieNtific Open data Edition (SEANOE) publication service and received the recorded DOI. The metadata elements have been further processed (refined) in EMODnet Ingestion Service in order to conform with the Data Submission Service specifications.
Arctic SDI catalogue