Creation year

2022

331 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Service types
Scale
Resolution
From 1 - 10 / 331
  • Categories  

    Notagildi: Reitakerfi eru nauðsynlegt til að birta upplýsingar sem af einhverjum ástæðum er ekki hægt að birta stakar s.s. vegna persónuverndar, umfangs verkefnis eða nákvæmni þeirra upplýsinga sem fyrir liggja. Reitakerfi Íslands er með mismunandi reitastærðum til að mæta mismunandi þörfum notenda við upplýsingamiðlun. Mælt er með notkun reitakerfisins m.a. þegar verið er að bera gögn saman milli stofnana. Reitakerfið er byggt á Lambert Azimuthal Equal Area vörpun sem tryggir að allir reitir sé jafn stórir. En það er helsta skilyrði þess að reitakerfið sé Inspire tækt. Viðmiðun er ISN 2004 Ef reitakerfið er notað í einhverjum af ISN Lambert vörpunum er það ferhyrnt. Orðskýringar: Heildarkerfið er nefnt reitakerfi. Hvert lag í því er nefnt net. Einingar í netinu eru nefndar reitir. Heiti reitana: Hver reitur hefur nafn sem er einkvæmt og er m.a. byggt upp á stærðareiningunni. 1km 10km og 100m skrárnar ná yfir strandlínu og eyjar landsins en 100km skráin nær yfir alla efnahagslögsöguna. grid_100k grid_50k grid_25k grid_10k grid_5k grid_2_5k grid_1k grid_500m grid_250m grid_100m Frekari tækniupplýsingar er að finna hér https://inspire.ec.europa.eu/id/document/tg/gg

  • Categories  

    The Total Productivity (TPROD), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Total Productivity (TPROD), or large integral, is the growing season integral computed as the sum of all daily Plant Phenology Index values between the dates of the season start (SOSD) and end (EOSD). The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Total Productivity is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The TPROD dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The Start-of-Season Value (SOSV), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Start-of-Season Value (SOSV) provides the value of the Plant Phenology Index (PPI) at the start of the vegetation growing season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Start-of-Season Value is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The SOSV dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The Minimum Value (MINV), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Minimum Value (MINV) is the average Plant Phenology Index (PPI) value of the minima before the growing season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Minimum Value is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The MINV dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The Slope of the green-up period (Left Slope, LSLOPE), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The slope of the green-up period (LSLOPE) expresses the rate of change in the values of the Plant Phenology Index (PPI) at the day when the vegetation growing season starts. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The green-up period slope is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The LSLOPE dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The Quality Flag (QFLAG), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Seasonal Productivity is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. The Quality Flag (QFLAG) is a quality indicator for the above set of 13 Vegetation Phenology and Productivity (VPP) parameters and provides a confidence level, that is described in table 4 of the same manual. The QFLAG dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The Season Length (LENGTH), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Season Length is the number of days between the start and end dates of the vegetation growing season in the time profile of the Plant Phenology Index (PPI). The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Season Length is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The LENGTH dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The raster file is the time series of the end of the vegetation growing season. The end of the growing season time-series is based on the time series of the Plant Phenology Index (PPI) derived from the MODIS BRDF-Adjusted Reflectance product (MODIS MCD43 NBAR). The PPI index is optimized for efficient monitoring of vegetation phenology and is derived from the source MODIS data using radiative transfer solutions applied to the reflectance in visible-red and near infrared spectral domains. The end of season indicator is based on calculating the end of the vegetation growing season from the annual PPI temporal curve using the TIMESAT software for each year between and including 2000 and 2021. The End-of-Season Date (EOSD), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The End-of-Season Date (EOSD) marks the date when the vegetation growing season ends in the time profile of the Plant Phenology Index (PPI). The end-of-season occurs, by definition, when the PPI value reaches 15% of the season amplitude during the green-down period. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The End-of-Season Date (EOSD) is one of the 13 parameters. The End-of-Season Date (EOSD) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2025.

  • Categories  

    The slope of the green-down or senescent period (Right Slope, RSLOPE), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The slope of the green-down or senescent period (RSLOPE) expresses the rate of change in the values of the Plant Phenology Index (PPI) at the day when the vegetation growing season ends. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The green-down period slope is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The RSLOPE dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The largest value for the fitted function during the season, one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The largest value for the fitted function during the season expresses the highest value of the season but may occur on a different date than the peak of season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The largest value for the fitted function during the season is one of the 13 parameters. The largest value time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2025.