Digital Elevation Model
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
Scale
-
The Atlas of Canada's Relief Map shows Canada's relief with a colour ramp of elevation ranges. Colour tints of depth ranges show ocean bathymetry. This map shows the relief of Canada using three different resolutions. Starting with low resolution, as you zoom in, it transitions to medium and then high resolution. The low resolution is derived from the merging of Natural Resources Canada (NRCan) High Resolution Digital Elevation Model (HRDEM) from 2021 and the legacy Canadian Digital Elevation Model (CDEM), 1945-2011, resampled to 804 metres. The medium resolution is the NRCan, Medium Resolution Digital Elevation Model (MRDEM) from 2024, with modifications by the Atlas of Canada for cartographic purposes. The high resolution is NRCan's 2021 HRDEM product with 1 metre pixels. Also included, is a bathymetric layer from GEBCO 2021 (https://download.gebco.net/) resampled to 804 metre pixels. Other sources: Danish Ministry of Climate, Energy and Utilities; Geological Survey of Denmark and Greenland (GEUS) 2021; Government of Iceland; United States. National Geodetic Survey’s Integrated Database, 2021 (https://geodesy.noaa.gov/) All layers have been symbolized to match the Atlas of Canada Relief wall map. Copies of this map may be obtained from authorized map dealers in Canada, USA and abroad. For further information on purchasing the paper map MCR 0101 or downloading the digital version free of charge, go to atlas.gc.ca. Produced by the Canada Centre for Mapping and Earth Observation, Natural Resources Canada. Printed in 2025. ISBN 978-0-660-37948-7 Catalogue No. m57-1/46-2021e Permanent link: https://doi.org/10.4095/pe5mnk08hr Further information on all these maps can be found on the Atlas of Canada web site atlas.gc.ca.
-
Íslenska: Frá 2015 hefur verið opið aðgengi að hæðargögnum af Norðurheimskautinu (norður af 60°N, þar með talið af Íslandi). Gögnin hafa gengið undir nafninu ArticDEM og eru frá Polar Geospatial Center sem er staðsett í University of Minnesota (https://www.pgc.umn.edu/data/arcticdem/). Gögnin urðu til við vinnslu mikils magns af landhæðarlíkönum, flest frá 2012 en elstu gögnin eru frá 2008. Landhæðarlíkönin eru unnin úr steríópörum af gervitunglamyndum frá WorldView 1-3 og GeoEye-1. Notast var við SETSM sem er opinn hugbúnaður fyrir stafrænar myndmælingar á Bluewaters ofurtölvu University of Illinois. Hvert landhæðarlíkan hefur 2x2 m upplausn og dekkar um 18X100 km stórt svæði á jörðu. Samstarf Náttúrufræðistofnunar, Veðurstofunnar og Polar Geospatial Center leiddi til þess að eftirfarandi aðferðir voru þróaðar til þess að vinna með gífurlegt magn gagna. Aðferðirnar eru: 1- Samræma staðsetningu allra landhæðarlíkana 2-Búa til samsett landhæðarlíkan úr öllum líkönunum með því að búa til þekju sem geymir tíma gagnanna. Hver pixill í samsetta líkaninu sem er unnið úr ArcticDEM er miðgildi allra líkana sem fyrirfinnast á svæðinu. English: Since 2015, elevation data from the Arctic (north of 60°N, including Iceland) started to be openly available through the ArcticDEM project, led by the Polar Geospatial Center, University of Minnesota (https://www.pgc.umn.edu/data/arcticdem/). This data consists of a large amount of Digital Elevation Models (DEMs) repeatedly acquired (multitemporal), typically from 2012-present, and the oldest data reaching back to 2008. The Digital Elevation Models (DEM) are derived from satellite sub-meter stereo imagery, particularly from WorldView 1-3 and GeoEye-1. The processing of the DEMs was done using SETSM, an open-source digital photogrammetric software, in the Bluewaters supercomputer (University of Ilinois). Each DEM has 2x2m resolution and a footprint of ~18x100km. In a collaborative effort between the Institute of Nature Research, the Icelandic Meteorological Office and the Polar Geospatial Center, we developed methods to handle and process a large amount of data available for Iceland. The methods developed consisted of: 1-Spatial adjustment of all the available DEMs, for homogeneity and consistency in the location of each individual DEM. 2-Robust mosaicking into one single DEM of Iceland, by taking advantage of the multi-temporal coverage of DEMs. Each pixel of the mosaic corresponds to a median elevation value from the possible elevations available from the ArcticDEM. For 3D printing the elevation model see: https://leidbeiningar.lmi.is/instruction/3dprinting
-
The High Resolution Digital Elevation Model Mosaic provides a unique and continuous representation of the high resolution elevation data available across the country. The High Resolution Digital Elevation Model (HRDEM) product used is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The mosaic is available for both the Digital Terrain Model (DTM) and the Digital Surface Model (DSM) from web mapping services. It is part of the CanElevation Series created to support the National Elevation Data Strategy implemented by NRCan. This strategy aims to increase Canada's coverage of high-resolution elevation data and increase the accessibility of the products. Unlike the HRDEM product in the same series, which is distributed by acquisition project without integration between projects, the mosaic is created to provide a single, continuous representation of strategy data. The most recent datasets for a given territory are used to generate the mosaic. This mosaic is disseminated through the Data Cube Platform, implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The mosaic is available from Web Map Services (WMS), Web Coverage Services (WCS) and SpatioTemporal Asset Catalog (STAC) collections. Accessible data includes the Digital Terrain Model (DTM), the Digital Surface Model (DSM) and derived products such as shaded relief and slope. The mosaic is referenced to the Canadian Height Reference System 2013 (CGVD2013) which is the reference standard for orthometric heights across Canada. Source data for HRDEM datasets used to create the mosaic is acquired through multiple projects with different partners. Collaboration is a key factor to the success of the National Elevation Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
-
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
-
**ATTENTION! The files in this dataset are designed for streaming, not downloading. For the best experience, please follow the instructions available in the resources.** In replacement of the former Canadian Digital Elevation Model (CDEM) that is no longer supported, the Medium Resolution Digital Elevation Model (MRDEM) product is a multi-source product that integrates elevation data from the Copernicus DEM** acquired during the TanDEM-X Mission (AIRBUS, 2022), and the High Resolution Digital Elevation Model data derived from airborne lidar. This product provides a complete, 30 meters resolution, nationwide coverage for Canada. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived products. The spatial coverage extends into the USA, where needed, to provide coverage for cross-border watersheds in support of hydrological studies and applications. The MRDEM DSM dataset is based on the GLO-30 version of the Copernicus DEM** (hereafter named GLO-30). The process to generate the MRDEM DTM dataset is more complex and involves different sources. Where available, the HRDEM Mosaic derived from lidar was used since it already provides reliable terrain elevation values. The HRDEM Mosaic data used was resampled from 1 meter to 30 meters. Elsewhere, the processing workflow combines a forest removal model and a settlement removal model that is applied to the GLO-30 values in order to estimate the terrain elevation values. Both datasets are projected to Canada Atlas Lambert NAD83 (CSRS) (EPSG:3979). The MRDEM is referenced to the CGVD2013 which is the reference standard for orthometric heights across Canada. The product Medium Resolution Digital Elevation Model (MRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. ** This product was in part produced using Copernicus WorldDEM-30 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014- 2018 provided under COPERNICUS by the European Union and ESA; all rights reserved. The organisations in charge of the Copernicus program by law or by delegation do not incur any liability for any use of the Copernicus WorldDEM-30.
-
The Saskatchewan Geospatial Imagery Collaborative (SGIC) was formed to acquire new aerial photography and satellite imagery of the province. The SGIC is made up of 29 participating organizations including Provincial Government, Crown Corporations, Municipalities, Federal Government, Universities, First Nations, Community Organizations, and Industry. A list of SGIC members can be found on the imagery access web-site at www.flysask.ca. The Saskatchewan Geospatial Imagery Collaborative is acquiring current digital high resolution imagery compatible with modern Geographic Information Systems. This imagery is an integral part of the land, resource and asset management decision-making, and provides enhanced analytical capability and capacity to them and their clients. Uses for this imagery include, but are not restriced to: Transportation and Traffic, Public Safety and Emergency Management, Drainage and Hydrology, Property Management and Land Surveying, Agricultural Planning and Management, Natural Resource Planning, Environmental Planning and Management, First Nations Planning and Consultation, Public Utilities Planning and Management, Municipal Planning and Analysis, Tourism, Education, and Scientific Research.
-
The 2008-12 Saskatchewan Orthophotography Project provides seamless, accurate province wide ortho-rectified nadir aerial photography and elevation data of the earth's surface for use in geographic information systems (GIS). The imagery , when complete in 2012, will cover the entirety of the Saskatchewan landmass, with a 100 metre buffer beyond the provincial border, an area of approximately 654,000 sq.km. An ongoing OrthoPhoto refresh program is planned to commence in 2012. The color orthophotos have a 62.5 centimter pixel resolution. Digital Orthophotography Products are as follows: 1) Black and White ortho-photography by township tile [tif and tfw]; 2) Color Ortho-photography by township tile [tif and tfw]; 3) Color Infrared Images by photo frame; ortho-rectified but unmosaiced [tif and tfw]; 4) Digital Elevation model by township tile - 100m grid and breaklines [shp and usgs.dem]; 5) Overlapping aerial photography by camera photo frame for stereo viewing [tif and tfw]; 6) Exterior orientation data and camera calibration data (Pat-B EO and Z1 formats]. The complete OrthoPhoto Data Series consists of over 7000 individual township tiles and more than 20TB of spatial information.