WMS
Type of resources
Available actions
Categories
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
-
This mosaic is calculated over the North American domain with a horizontal spatial resolution of 1 km. This mosaic therefore includes all the Canadian and American radars available in the network and which can reach a maximum of 180 contributing radars. To better represent precipitation over the different seasons, this mosaic renders in mm/h to represent rain and in cm/h to represent snow. For the two precipitation types (rain and snow), we use two different mathematical relationships to convert the reflectivity by rainfall rates (mm/h rain cm/h for snow). This is a hybrid mosaic composed of different estimation precipitation products : PRECIP-ET product used only for C-Band radars (which are in the process of being replaced with S-Band radars) and DPQPE (Dual-Pol Quantitative Precipitation Estimation) for S-Band radars. For the US Nexrad radars, ECCC uses the most similar product from the US Meteorological Service (NOAA). This product displays radar reflectivity converted into precipitation rates, using the same formulas as the Canadian radars.
-
Radiocarbon dates are derived from organic samples collected through marine and coastal expeditions of the Geological Survey of Canada Atlantic and Pacific. These efforts were conducted primarily to better understand the spatial and temporal coverage of sediments and seabed-fast marine ice during the last deglaciation. The quality of these data varies - ranging from imprecise bulk samples and more accurate AMS estimates derived from single shell fragments. These data are ordered in the menu in 1000 year divisions. By default, only conventional radiocarbon ages are displayed, and reservoir-corrected and measured ages are hidden.
-
Radar coverage is provided to dynamically display the zones covered by the radars every 6 minutes, and to provide information on the availability (or not) of the contributing radars as well as on the areas of overlap.
-
Hotspots represent active wildfires. Natural Resources Canada Canadian Wild Fire Information System identifies them by processing Infrared satellite images. This layer contains the hotspots that are selected to be used as input for the Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) to enable forecasting air quality while taking into account wildfire emissions. Geographical coverage is Canada and the United States. The products are presented as historical annual compilations which highlight long-term trends in cumulative effects on the environment.
-
The Canadian Gravity Anomaly Data Base consists of approximately 660 000 gravity observations, including 165 000 on land, acquired between 1944 and the present. The data spacing ranges from less than 1 km to over 20 km, with an average spacing between 5 and 10 km. All measurements were reduced to the IGSN71 datum. Theoretical gravity values were calculated from the Geodetic Reference System 1967 (GRS67) gravity formula. Bouguer anomalies were calculated using a vertical gravity gradient of 0.3086 mGal·m-1 and a crustal density of 2 670 kg·m-3.
-
The Canadian Gravity Anomaly Data Base consists of approximately 660 000 gravity observations, including 165 000 on land, acquired between 1944 and the present. The data spacing ranges from less than 1 km to over 20 km, with an average spacing between 5 and 10 km. All measurements were reduced to the IGSN71 datum. Theoretical gravity values were calculated from the Geodetic Reference System 1967 (GRS67) gravity formula. Bouguer anomalies were calculated using a vertical gravity gradient of 0.3086 mGal·m-1 and a crustal density of 2 670 kg·m-3.
-
The Canadian Gravity Anomaly Data Base consists of approximately 660 000 gravity observations, including 165 000 on land, acquired between 1944 and the present. The data spacing ranges from less than 1 km to over 20 km, with an average spacing between 5 and 10 km. All measurements were reduced to the IGSN71 datum. Theoretical gravity values were calculated from the Geodetic Reference System 1967 (GRS67) gravity formula. Bouguer anomalies were calculated using a vertical gravity gradient of 0.3086 mGal·m-1 and a crustal density of 2 670 kg·m-3.
-
Web Map Service providing access to Land cover data from Agency for Data supply and Efficiency to the INSPIRE LC vector GML application schema v4.0.
-
Web Map Service providing access to Existing Land use from Danish Agency for Data supply and Efficiency. The contents are data from the data set "GeoDanmark", transformed to the INSPIRE ELU GML application schema v4.0.
-
Web Map Service providing access to Statistical Units from Agency for Data supply and Efficiency. The content are data from the data sets "DAGI", transformed to the INSPIRE SU vector GML application schema v4.0.