Format

GeoTIF

204 record(s)
 
Type of resources
Available actions
Categories
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 204
  • Categories  

    Canada's National Forest Inventory (NFI) sampling program is designed to support reporting on forests at the national scale. On the other hand, continuous maps of forest attributes are required to support strategic analyses of regional policy and management issues. We have therefore produced maps covering 4.03 × 106 km2 of inventoried forest area for the 2001 base year using standardised observations from the NFI photo plots (PP) as reference data. We used the k nearest neighbours (kNN) method with 26 geospatial data layers including MODIS spectral data and climatic and topographic variables to produce maps of 127 forest attributes at a 250 × 250 m resolution. The stand-level attributes include land cover, structure, and tree species relative abundance. In this article, we report only on total live aboveground tree biomass, with all other attributes covered in the supplementary data (http://nrcresearchpress.com/doi/suppl/10.1139/cjfr-2013-0401). In general, deviations in predicted pixel-level values from those in a PP validation set are greater in mountainous regions and in areas with either low biomass or sparse PP sampling. Predicted pixel-level values are overestimated at small observed values and underestimated at large ones. Accuracy measures are improved through the spatial aggregation of pixels to 1 km2 and beyond. Overall, these new products provide unique baseline information for strategic-level analyses of forests (https://nfi.nfis.org) Collection: - **[Canada's National Forest Inventory (NFI) 2006](https://open.canada.ca/data/en/dataset/e2fadaeb-3106-4111-9d1c-f9791d83fbf4)**

  • Categories  

    This collection is a legacy product that is no longer supported. It may not meet current government standards. Canada's Orthoimages 2005-2010 is the national medium-resolution imagery coverage of Canada. These digital raster data acquired by the Spot4 and Spot5 satellites comprise five spectral bands, namely: a panchromatic band having 10 m pixels and four multispectral bands having pixels of 20 m. These orthoimages were produced according to the 1983 North American Reference System (NAD83SCRS) according to the Universal Transverse Mercator (UTM) and Lambert Conformal Conic (LCC) mapping. The set of orthoimages was created with the most accurate control data available at the time of its creation: Landsat7 Imagery Control Points, National Road Network (NRN) ) and the Landsat7 Orthorectified Imagery.

  • Categories  

    Annual mapping of national level forest harvesting for Canada detected inclusive of 1985 to 2015 from Landsat satellite imagery. This dataset is composed of two layers: (1) binary harvest mask, and (2) year of harvest disturbance detection. The information outcomes represent 31 years of harvesting activity in Canada’s forests, derived from a single, consistent, spatially-explicit data source in an automated manner. Time series of Landsat data with 30-m spatial resolution were used to characterize national trends in stand replacing forest disturbances, including those attributed to harvest for the period 1985–2015 for Canada's 650 million hectare forested ecosystems (Hermosilla et al. 2016). See references below for an overview regarding the data, image processing, and time-series change detection methods applied, as well as information on independent accuracy assessment of the data. When using this data, please cite as: Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, G.W. Hobart, L.B. Campbell, (2016). Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring. International Journal of Digital Earth. 9(11), 1035-1054. ( Hermosilla et al. 2016) For additional resources on the data used and methods applied, please see: Hermosilla, T., Wulder, M. A., White, J. C., Coops, N.C., Hobart, G.W., (2015). An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sensing of Environment 158, 220-234. ( Hermosilla et al. 2015a) Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., (2015). Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics. Remote Sensing of Environment 170, 121-132. ( Hermosilla et al. 2015b) Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., 2017. Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation 63, 104-111.( Hermosilla et al. 2017)

  • Categories  

    Fish Habitat Assessment Output: 13 of 16 Average Water Level (75.0m ASL) - Juvenile/Adult Habitat - High Vegetation Association Species (All Thermal Guilds) Habitat suitability was assessed for the Bay of Quinte Area of Concern, at a 3 m grid resolution, using the Habitat Ecosystem Assessment Tool (HEAT), temperature algorithms, vegetation models, and water level input. Habitat classifications were based on three variables: depth (elevation), vegetation, and substrate; and modified by temperature suitabilities. The final suitability maps were based on documented habitat and temperature associations for the fish in the area. Different life stages (spawning requirements, nursery habitat, adult habitat) were modeled for the years of 1972-2011. Suitability values were scaled from 0 (not suitable) to 1 (highly suitable) and converted to suitability classes of very low, low, medium, and high. The final maps for each guild – life stage combination are maximum suitability values from the 39-year period modelled.

  • The raster maps depict a suite of forest attributes in 2001* and 2011 at 250 m by 250 m spatial resolution. The maps were produced using the k nearest neighbours method applied to MODIS imagery and trained from National Forest Inventory photo plot data. For detailed information about map production methods please refer to Beaudoin et al. (2018) "Tracking forest attributes across Canada between 2001 and 2011 using the k nearest neighbours mapping approach applied to MODIS imagery." Canadian Journal of Forest Research 48, 85-93. https://cfs.nrcan.gc.ca/publications?id=38979 The map datasets may be downloaded from https://nfi.nfis.org/downloads/nfi_knn2011.zip or https://open.canada.ca/data/en/dataset/ec9e2659-1c29-4ddb-87a2-6aced147a990 * Note: the forest composition (leading tree genus) map depicts forest attributes in 2001. How can this data be used? The resolution and accuracy of these map products are best suited for strategic-level forest reporting and informing policy and decision making at regional to national scales. As these maps also offer a coherent set of quantitative values for a large suite of forest attributes, they can be used as baseline information for modelling and in calculations such as merchantable forest volume or percentage of tree species. It is also possible to overlay these maps with other maps produced on the same pixel grid to make assessments of disturbance impacts, such as fire and harvests.

  • Categories  

    Fish Habitat Assessment Output: 3 of 16 High Water Level (75.4m ASL) - Nursery Habitat - High Vegetation Association Species (All Temperature Windows) Habitat suitability was assessed for the Bay of Quinte Area of Concern, at a 3 m grid resolution, using the Habitat Ecosystem Assessment Tool (HEAT), temperature algorithms, vegetation models, and water level input. Habitat classifications were based on three variables: depth (elevation), vegetation, and substrate; and modified by temperature suitabilities. The final suitability maps were based on documented habitat and temperature associations for the fish in the area. Different life stages (spawning requirements, nursery habitat, adult habitat) were modeled for the years of 1972-2011. Suitability values were scaled from 0 (not suitable) to 1 (highly suitable) and converted to suitability classes of very low, low, medium, and high. The final maps for each guild – life stage combination are maximum suitability values from the 39-year period modelled.

  • Categories  

    Fish Habitat Assessment Output: 8 of 16 High Water Level (75.4m ASL) - Juvenile/Adult Habitat - Low Vegetation Association Species (Coldwater) Habitat suitability was assessed for the Bay of Quinte Area of Concern, at a 3 m grid resolution, using the Habitat Ecosystem Assessment Tool (HEAT), temperature algorithms, vegetation models, and water level input. Habitat classifications were based on three variables: depth (elevation), vegetation, and substrate; and modified by temperature suitabilities. The final suitability maps were based on documented habitat and temperature associations for the fish in the area. Different life stages (spawning requirements, nursery habitat, adult habitat) were modeled for the years of 1972-2011. Suitability values were scaled from 0 (not suitable) to 1 (highly suitable) and converted to suitability classes of very low, low, medium, and high. The final maps for each guild – life stage combination are maximum suitability values from the 39-year period modelled.

  • Categories  

    Fish Habitat Assessment Output: 7 of 16 High Water Level (75.4m ASL) - Juvenile/Adult Habitat - Low Vegetation Association Species (Coolwater Guild) Habitat suitability was assessed for the Bay of Quinte Area of Concern, at a 3 m grid resolution, using the Habitat Ecosystem Assessment Tool (HEAT), temperature algorithms, vegetation models, and water level input. Habitat classifications were based on three variables: depth (elevation), vegetation, and substrate; and modified by temperature suitabilities. The final suitability maps were based on documented habitat and temperature associations for the fish in the area. Different life stages (spawning requirements, nursery habitat, adult habitat) were modeled for the years of 1972-2011. Suitability values were scaled from 0 (not suitable) to 1 (highly suitable) and converted to suitability classes of very low, low, medium, and high. The final maps for each guild – life stage combination are maximum suitability values from the 39-year period modelled.

  • The raster maps depict a suite of forest attributes in 2001* and 2011 at 250 m by 250 m spatial resolution. The maps were produced using the k nearest neighbours method applied to MODIS imagery and trained from National Forest Inventory photo plot data. For detailed information about map production methods please refer to Beaudoin et al. (2018) "Tracking forest attributes across Canada between 2001 and 2011 using the k nearest neighbours mapping approach applied to MODIS imagery." Canadian Journal of Forest Research 48, 85-93. https://cfs.nrcan.gc.ca/publications?id=38979 The map datasets may be downloaded from https://nfi.nfis.org/downloads/nfi_knn2011.zip or https://open.canada.ca/data/en/dataset/ec9e2659-1c29-4ddb-87a2-6aced147a990 * Note: the forest composition (leading tree genus) map depicts forest attributes in 2001. How can this data be used? The resolution and accuracy of these map products are best suited for strategic-level forest reporting and informing policy and decision making at regional to national scales. As these maps also offer a coherent set of quantitative values for a large suite of forest attributes, they can be used as baseline information for modelling and in calculations such as merchantable forest volume or percentage of tree species. It is also possible to overlay these maps with other maps produced on the same pixel grid to make assessments of disturbance impacts, such as fire and harvests.

  • Categories  

    Probability of total precipitation above 50mm over the forecast period (pweek50_prob). Week 1 and week 2 forecasted probability is available daily from September 1 to August 31. Week 3 and week 4 forecasted probability is available weekly (Thursday) from September 1 to August 31. Precipitation (moisture availability) establishes the economic yield potential and product quality of field crops. Both dry and wet precipitation extremes have the ability to inhibit proper crop growth. The greatest daily precipitation index covers the risk of excessive precipitation in the short term, while the other indices pertain to longer term moisture availability. Agriculture and Agri-Food Canada (AAFC) and Environment and Climate Change Canada (ECCC) have together developed a suite of extreme agrometeorological indices based on four main categories of weather factors: temperature, precipitation, heat, and wind. The extreme weather indices are intended as short-term prediction tools and generated using ECCC’s medium range forecasts to create a weekly index product on a daily and weekly basis.