From 1 - 10 / 13
  • Categories  

    The small integral (SINT), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The small integral (SINT) expresses the difference between the function describing the season and the base level from season start to season end. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The small integral for the fitted function during the season is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The small integral time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The decrease rate, one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The decrease rate at the end of the season (decrease rate) expresses the rate of change in the values of the Plant Phenology Index (PPI) at the day when the vegetation growing season ends. It is calculated as the absolute value of the ratio of the difference between the right 20 % and 80% levels and the corresponding time difference. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The decrease rate at the end of the season (decrease rate) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The decrease rate at the end of the season (decrease rate) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The Base Level Value (Base level), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Base Level Value (Base level) is the average Plant Phenology Index (PPI) value of the minima before and after the growing season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Base Level Value (Base level) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The Base Level Value (Base level) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The seasonal amplitude, one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The seasonal amplitude is the difference between the maximum and minimum Plant Phenology Index (PPI) values reached during the season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The seasonal amplitude) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The seasonal amplitude time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The End-of-Season Value (EOSV), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The End-of-Season Value (EOSV) provides the value of the Plant Phenology Index (PPI) at the end of the vegetation growing season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The End-of-Season Value (EOSV) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The End-of-Season Value (EOSV) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    This metadata refers to the Plant Phenology Index (PPI) dataset, one of the near real-time (NRT) Vegetation Index products of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP), component of the Copernicus Land Monitoring Service (CLMS). The Plant Phenology Index (PPI) is a physically based vegetation index for improved monitoring of plant phenology, that is developed from a simplified solution to the radiative transfer equation by Jin and Eklundh (2014). PPI has a linear relationship with green leaf area index, a strong correlation with gross primary productivity, and is capable of disentangling remotely sensed plant phenology from snow seasonality. It is reported to be superior to other indices for spring phenology retrieval over the northern latitudes and for GPP estimation in African semi-arid ecosystems. Comparison of satellite-derived PPI to ground observations of plant phenology and gross primary productivity (GPP) shows strong similarity of temporal patterns over several Nordic boreal forest sites. Further information is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The PPI time series dataset is made available as raster files with 500 x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for the period from January 2000 until today. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The raster file is the temporal trend in the length of the vegetation growing season. The length of growing season data set is based on the time series of the Plant Phenology Index (PPI) derived from the MODIS BRDF-Adjusted Reflectance product (MODIS MCD43 NBAR). The PPI index is optimized for efficient monitoring of vegetation phenology and is derived from the source MODIS data using radiative transfer solutions applied to the reflectance in visible-red and near infrared spectral domains. The season length indicator is based on calculating the start and end of the growing season from the annual PPI temporal curve using the TIMESAT software for each year between and including 2000 and 2021. The Season Length (LENGTH), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Season Length is the number of days between the start and end dates of the vegetation growing season in the time profile of the Plant Phenology Index (PPI). The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Season Length is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The Season Length time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The largest value for the fitted function during the season, one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The largest value for the fitted function during the season expresses the highest value of the season but may occur on a different date than the peak of season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The largest value for the fitted function during the season is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The largest value time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The Start-of-Season Value (SOSV), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Start-of-Season Value (SOSV) provides the value of the Plant Phenology Index (PPI) at the start of the vegetation growing season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Start-of-Season Value (SOSV) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The Start-of-Season Value (SOSV) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The raster file is the time series of the start of the vegetation growing season. The start of the growing season time-series is based on the time series of the Plant Phenology Index (PPI) derived from the MODIS BRDF-Adjusted Reflectance product (MODIS MCD43 NBAR). The PPI index is optimized for efficient monitoring of vegetation phenology and is derived from the source MODIS data using radiative transfer solutions applied to the reflectance in visible-red and near infrared spectral domains. The start of season indicator is based on calculating the start of the vegetation growing season from the annual PPI temporal curve using the TIMESAT software for each year between and including 2000 and 2021. The Start-of-Season Date (SOSD), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Start-of-Season Date (SOSD) marks the date when the vegetation growing season starts in the time profile of the Plant Phenology Index (PPI). The start-of-season occurs, by definition, when the PPI value reaches 25% of the season amplitude during the green-up period. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Start-of-Season Date (SOSD) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The Start-of-Season Date (SOSD) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available in the second half of 2024. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form