From 1 - 10 / 124
  • Categories  

    The pan-European Very High Resolution (VHR) Image Mosaic 2012 provides optical VHR2 (Very High Resolution: > 1m and <= 4m) coverage over Europe. The surface covered by the image dataset is 7,3 million square kilometres and has a spatial resolution of 2,5 m. The acquisition window of the imagery is January 2011 to December 2013. Images are derived from the following satellite sensors: • SPOT-5 at 2.5m pan-sharpened • SPOT-6 at 1.5 m pan-sharpened • FORMOSAT-2 at 2m pan-sharpened The mosaic primarily is used as input data in the production of various Copernicus Land Monitoring Service (CLMS) datasets and services, such as land cover maps and high resolution layers on land cover characteristic and can be also useful for CLMS users for visualizations and classifications on land. The input imagery for the creation of the mosaic is provided by ESA. Due to license restrictions, VHR Image Mosaic 2012 is only available as a web service (WMS), and not for data download.

  • Categories  

    The Total Productivity (TPROD), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Total Productivity (TPROD), or large integral, is the growing season integral computed as the sum of all daily Plant Phenology Index values between the dates of the season start (SOSD) and end (EOSD). The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Total Productivity is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The TPROD dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The slope of the green-down or senescent period (Right Slope, RSLOPE), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The slope of the green-down or senescent period (RSLOPE) expresses the rate of change in the values of the Plant Phenology Index (PPI) at the day when the vegetation growing season ends. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories, which is a filtered time series with regular 10-day time step. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The green-down period slope is one of the 13 parameters. The full list is available in the table 3 of the Product User Manual in the below link section. A complementary quality indicator (QFLAG) provides a confidence level, that is described in table 4 of the same manual. The RSLOPE dataset is made available as raster files with 10 x 10m and 100 x 100m resolutions, in ETRS89-LAEA projection corresponding to the HRL grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2017 onwards. It is updated in the first quarter of each year.

  • Categories  

    The Start-of-Season Value (SOSV), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European Medium Resolution Vegetation Phenology and Productivity (MR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Start-of-Season Value (SOSV) provides the value of the Plant Phenology Index (PPI) at the start of the vegetation growing season. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Start-of-Season Value (SOSV) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The Start-of-Season Value (SOSV) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available by the end of 2022. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The high resolution imperviousness products capture the percentage and change of soil sealing. Built-up areas are characterized by the substitution of the original (semi-) natural land cover or water surface with an artificial, often impervious cover. These artificial surfaces are usually maintained over long periods of time. A series of high resolution imperviousness datasets (for the 2006, 2009, 2012, 2015 and 2018 reference years) with all artificially sealed areas was produced using automatic derivation based on calibrated Normalized Difference Vegetation Index (NDVI). This series of imperviousness layers constitutes the main status layers. They are per-pixel estimates of impermeable cover of soil (soil sealing) and are mapped as the degree of imperviousness (0-100%). Imperviousness change layers were produced as a difference between the reference years (2006-2009, 2009-2012, 2012-2015, 2015-2018 and additionally 2006-2012, to fully match the CORINE Land Cover production cycle) and are presented 1) as degree of imperviousness change (-100% -- +100%), in 20m and 100m pixel size, and 2) a classified (categorical) 20m change product.

  • Categories  

    The raster file is the time series of the start of the vegetation growing season. The start of the growing season time-series is based on the time series of the Plant Phenology Index (PPI) derived from the MODIS BRDF-Adjusted Reflectance product (MODIS MCD43 NBAR). The PPI index is optimized for efficient monitoring of vegetation phenology and is derived from the source MODIS data using radiative transfer solutions applied to the reflectance in visible-red and near infrared spectral domains. The start of season indicator is based on calculating the start of the vegetation growing season from the annual PPI temporal curve using the TIMESAT software for each year between and including 2000 and 2021. The Start-of-Season Date (SOSD), one of the Vegetation Phenology and Productivity (VPP) parameters, is a product of the pan-European High Resolution Vegetation Phenology and Productivity (HR-VPP) component of the Copernicus Land Monitoring Service (CLMS). The Start-of-Season Date (SOSD) marks the date when the vegetation growing season starts in the time profile of the Plant Phenology Index (PPI). The start-of-season occurs, by definition, when the PPI value reaches 25% of the season amplitude during the green-up period. The Plant Phenology Index (PPI) is a physically based vegetation index, developed for improving the monitoring of the vegetation growth cycle. The PPI index values, with 5-day satellite revisit cycle, are first used in a function fitting to derive the PPI Seasonal Trajectories. From these Seasonal Trajectories, a suite of 13 Vegetation Phenology and Productivity (VPP) parameters are then computed and provided, for up to two seasons each year. The Start-of-Season Date (SOSD) is one of the 13 parameters. The full list is available in the Product User Manual: https://land.copernicus.eu/user-corner/technical-library/clms_mrvpp_pum_d1-0.pdf The Start-of-Season Date (SOSD) time series dataset is made available as raster files with 500x 500m resolution, in ETRS89-LAEA projection corresponding to the MCD43 tiling grid, for those tiles that cover the EEA38 countries and the United Kingdom and for two seasons in each year from 2000 onwards. It is updated in the first quarter of each year. The full on-line access to open and free data for this resource will be made available by the end of 2022. Until then the data will be made available 'on-demand' by filling in the form at: https://land.copernicus.eu/contact-form

  • Categories  

    The high resolution imperviousness products capture the percentage and change of soil sealing. Built-up areas are characterized by the substitution of the original (semi-) natural land cover or water surface with an artificial, often impervious cover. These artificial surfaces are usually maintained over long periods of time. A series of high resolution imperviousness datasets (for the 2006, 2009, 2012, 2015 and 2018 reference years) with all artificially sealed areas was produced using automatic derivation based on calibrated Normalized Difference Vegetation Index (NDVI). This series of imperviousness layers constitutes the main status layers. They are per-pixel estimates of impermeable cover of soil (soil sealing) and are mapped as the degree of imperviousness (0-100%). Imperviousness change layers were produced as a difference between the reference years (2006-2009, 2009-2012, 2012-2015, 2015-2018 and additionally 2006-2012, to fully match the CORINE Land Cover production cycle) and are presented 1) as degree of imperviousness change (-100% -- +100%), in 20m and 100m pixel size, and 2) a classified (categorical) 20m change product.

  • Categories  

    Corine Land Cover Change 2000-2006 (CHA0006) is one of the Corine Land Cover (CLC) datasets produced within the frame the Copernicus Land Monitoring Service referring to changes in land cover / land use status between the years 2000 and 2006. CHA is derived from satellite imagery by direct mapping of changes taken place between two consecutive inventories, based on image-to-image comparison. CLC service has a long-time heritage (formerly known as "CORINE Land Cover Programme"), coordinated by the European Environment Agency (EEA). It provides consistent and thematically detailed information on land cover and land cover changes across Europe. CLC datasets are based on the classification of satellite images produced by the national teams of the participating countries - the EEA members and cooperating countries (EEA39). National CLC inventories are then further integrated into a seamless land cover map of Europe. The resulting European database relies on standard methodology and nomenclature with following base parameters: 44 classes in the hierarchical 3-level CLC nomenclature; minimum mapping unit (MMU) for status layers is 25 hectares; minimum width of linear elements is 100 metres. Change layers have higher resolution, i.e. minimum mapping unit (MMU) is 5 hectares for Land Cover Changes (CHA), and the minimum width of linear elements is 100 metres. The CLC service delivers important data sets supporting the implementation of key priority areas of the Environment Action Programmes of the European Union as e.g. protecting ecosystems, halting the loss of biological diversity, tracking the impacts of climate change, monitoring urban land take, assessing developments in agriculture or dealing with water resources directives. CLC belongs to the Pan-European component of the Copernicus Land Monitoring Service (https://land.copernicus.eu/), part of the European Copernicus Programme coordinated by the European Environment Agency, providing environmental information from a combination of air- and space-based observation systems and in-situ monitoring. Additional information about CLC product description including mapping guides can be found at https://land.copernicus.eu/user-corner/technical-library/. CLC class descriptions can be found at https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/.

  • Categories  

    EU-Hydro is a dataset for all EEA38 countries and United Kingdom providing photo-interpreted river network, consistent of surface interpretation of water bodies (lakes and wide rivers), and a drainage model (also called Drainage Network), derived from EU-DEM, with catchments and drainage lines and nodes. This metadata refers to the EU-Hydro coastline, which is disseminated as one shapefile merged for all 35 basins. The coastline is also included for each basin in the EU-Hydro River Network Database. The production of EU-Hydro and the derived layers was coordinated by the European Environment Agency in the frame of the EU Copernicus programme.

  • Categories  

    The pan-European High Resolution (HR) Image Mosaic 2009 provides HR2 (High Resolution: 20 meter) coverage over Europe. The surface covered by the image dataset is 5.8 million square kilometres and has a spatial resolution of 20 meters. The imagery is composed during specific acquisition windows between 2008 and 2010. Images are derived from the following satellite sensors: Resourcesat-1 SPOT-4/-5 The mosaic primarily is used as input data in the production of various Copernicus Land Monitoring Service (CLMS) datasets and services, such as land cover maps and high resolution layers on land cover characteristic and can be also useful for CLMS users for visualizations and classifications on land. The input imagery for the creation of the mosaic is provided by ESA. Due to license restrictions, HR Image Mosaic 2009 is only available as a web service (WMS), and not for data download.