imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Each pixel value corresponds to the mean historical “Best-quality” Max-NDVI value for a given week, as calculated from the previous 20 years in the MODIS historical record (i.e. does not include data from the current year). These data are also often referred to as “weekly baselines” or “weekly normals”.
-
This dataset includes the extent of the boreal forest as well as the extent of managed boreal forest worldwide. The extent of boreal forest was produced from Brandt et al. (2013) and a modified version of Goudilin (1987). Managed forest was defined as suggested by IPCC (2003) using data from FAFS (2009), Gauthier et al. (2014), See et al. (2015) and AICC maps. The extent of managed forest mostly includes areas managed for wood production, areas protected from large-scale disturbances as well as formal protected areas. Both boreal forest extent and managed boreal forest extent are available in raster and vector data. Please cite this data product as: Boucher, D., D.G. Schepaschenko, S. Gauthier, P. Bernier, T. Kuuluvainen, A. Z. Shvidenko. 2024. World boreal forest and managed boreal forest extent. DOI: 10.23687/88d70716-2600-4995-8d5f-86f96e383abf These data were presented in the following article: Gauthier, S., P. Bernier, T. Kuuluvainen, A. Z. Shvidenko, D. G. Schepaschenko. 2015. Boreal forest health and global change. Science 349:819-822. DOI: 10.1126/science.aaa9092 References: J. P. Brandt, M. D. Flannigan, D. G. Maynard, I. D. Thompson, W. J. A. Volney, Environ. Rev. 21, 207–226 (2013) I. S. Goudilin, Landscape map of the USSR. Legend to the landscape map of the USSR. Scale 1:2 500 000. Moscow, Ministry of Geology of the USSR (1987) [in Russian]. Inter-governmental panel on climate change (IPCC). J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, et al., Eds., Good practice guidance for land use, land-use change and forestry (IPCC/NGGIP/IGES, Kanawaga, 2003) Federal Agency of Forest Service (FAFS), Forest Fund of the Russian Federation (state by 1 January 2009) (Federal Agency of Forest Service, Moscow, 2009) [in Russian] S. Gauthier et al., Environ. Rev. 22, 256–285 (2014). See et al., Harnessing the power of volunteers, the internet and Google Earth to collect and validate global spatial information using Geo-Wiki. Technological Forecasting and Social Change. (2015). doi:10.1016/j.techfore.2015.03.002 Alaska Interagency Coordination Center (AICC). Fire Information. https://fire.ak.blm.gov/content/maps/aicc/Large%20Maps/Alaska_Fire_Management_Options.pdf (the version of 2014 was used)
-
CHS offers 500-metre bathymetric gridded data for users interested in the topography of the seafloor. This data provides seafloor depth in metres and is accessible for download as predefined areas.
-
This collection is a legacy product that is no longer supported. It may not meet current Government standards. The National Topographic Data Base (NTDB) comprises digital vector data sets that cover the entire Canadian landmass. The NTDB includes features such as watercourses, urban areas, railways, roads, vegetation, and relief. The organizational unit for the NTDB is the National Topographic System (NTS), based on the North American Datum of 1983 (NAD83). Each file (data set) consists of one NTS unit at either the 1:50,000 or 1:250,000 scale. Related Products: [NTDB Correction Matrices, 2003-2009](https://ouvert.canada.ca/data/en/dataset/b6d0c19c-27e3-4392-b21f-49b1eec95653)
-
Leaf area index (LAI) quantified the density of vegetation irrespective of land cover. LAI quantifies the total foliage surface area per ground surface area. LAI has been identified by the Global Climate Observing System as an essential climate variable required for ecosystem, weather and climate modelling and monitoring. This product consists of a national scale coverage (Canada) of monthly maps of the maximum LAI during a growing season (May-June-july-August-September) at 20m. References: L. Brown, R. Fernandes, N. Djamai, C. Meier, N. Gobron, H. Morris, C. Canisius, G. Bai, C. Lerebourg, C. Lanconelli, M. Clerici, J. Dash. Validation of baseline and modified Sentinel-2 Level 2 Prototype Processor leaf area index retrievals over the United States IISPRS J. Photogramm. Remote Sens., 175 (2021), pp. 71-87, https://doi.org/10.1016/j.isprsjprs.2021.02.020. https://www.sciencedirect.com/science/article/pii/S0924271621000617 Richard Fernandes, Luke Brown, Francis Canisius, Jadu Dash, Liming He, Gang Hong, Lucy Huang, Nhu Quynh Le, Camryn MacDougall, Courtney Meier, Patrick Osei Darko, Hemit Shah, Lynsay Spafford, Lixin Sun, 2023. Validation of Simplified Level 2 Prototype Processor Sentinel-2 fraction of canopy cover, fraction of absorbed photosynthetically active radiation and leaf area index products over North American forests, Remote Sensing of Environment, Volume 293, https://doi.org/10.1016/j.rse.2023.113600. https://www.sciencedirect.com/science/article/pii/S0034425723001517
-
McElhanney Consulting Services Ltd (MCSL) has performed a LiDAR and Imagery survey in southern Saskatchewan. The acquisition was completed between the 16th and 25th of October, 2009. The survey consisted of approximately 790 square kilometers of coverage. While collecting the LiDAR data, we also acquired aerial photo in RGB and NIR modes consisting of 1649 frames each.
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistrated. For this dataset, the spatial resolutions are: 100 cm for the year 1932 and 50 cm for the year 1950. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived products managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
Note: To visualize the data in the viewer, zoom into the area of interest. The National Air Photo Library (NAPL) of Natural Resources Canada archives over 6 million aerial photographs covering all of Canada, some of which date back to the 1920s. This collection includes Time Series of aerial orthophoto mosaics over a selection of major cities or targeted areas that allow the observation of various changes that occur over time in those selected regions. These mosaics are disseminated through the Data Cube Platform implemented by NRCan using geospatial big data management technologies. These technologies enable the rapid and efficient visualization of high-resolution geospatial data and allow for the rapid generation of dynamically derived products. The data is available as Cloud Optimized GeoTIFF (COG) for direct access and as Web Map Services (WMS) or Web Coverage Services (WCS) with a temporal dimension for consumption in Web or GIS applications. The NAPL mosaics are made from the best spatial resolution available for each time period, which means that the orthophotos composing a NAPL Time Series are not necessarily coregistrated. For this dataset, the spatial resolutions are: 75 cm for the year 1960 and 50 cm for the year 1974. The NAPL indexes and stores federal aerial photography for Canada, and maintains a comprehensive historical archive and public reference centre. The Earth Observation Data Management System (EODMS) online application allows clients to search and retrieve metadata for over 3 million out of 6 million air photos. The EODMS online application enables public and government users to search and order raw Government of Canada Earth Observation images and archived product managed by NRCan such as aerial photos and satellite imagery. To access air photos, you can visit the EODMS web site: https://eodms-sgdot.nrcan-rncan.gc.ca/index-en.html
-
The AAFC Infrastructure Flood Mapping in Saskatchewan 20 centimeter colour orthophotos is a collection of georeferenced color digital orthophotos with 20 cm pixel size. The imagery was delivered in GeoTIF and ECW formats. The TIF and ECW mosaics were delivered in the same 1 km x 1 km tiles as the LiDAR data, and complete mosaics for each area in MrSID format were also provided. The digital photos were orthorectified using the ground model created from the DTM Key Points. With orthorectification, only features on the surface of the ground are correctly positioned in the orthophotos. Objects above the surface of the ground, such as building rooftops and trees, may contain horizontal displacement due to image parallax experienced when the photos were captured. This is sometimes apparent along the cut lines between photos. For positioning of above-ground structures it is recommended to use the LiDAR point clouds for accurate horizontal placement.
-
The Moderate Resolution Imaging Spectroradiometer (MODIS ) is one of the most sophisticated sensors that is used in a wide range of applications related to land, ocean and atmosphere. It has 36 spectral channels with spatial resolution varying between 250 m and 1 km at nadir. MODIS channels 1 (B1, visible) and 2 (B2, near infrared) are available at 250 m spatial resolution, an additional five channels for terrestrial applications (bands B3 to B7) are available at 500 m spatial resolution, the other twenty-nine channels not included in this data set capture images with a spatial resolution of 1 km. The MODIS record begins in March 2000 and extends to present with daily measurements over the globe. This level 3 product for Canada was created from the following original Level 1 (1B) MODIS data (collection 5): a) MOD02QKM - Level 1B 250 m swath data, 5 min granules; b ) MOD02HKM - level 1B , 500 m swath data, 5 min granules; c) MOD03 - level 1 geolocation information, 1 km swath data, 5 min granules. All these data are available from the DAAC Earth Observing System Data Gateway (NASA http://ladsweb.nascom.nasa.gov/data/search.html). The terrestrial channels MODIS (B3 to B7) at 500 m spatial resolution were reduced to 250 m with an adaptive regression system and normalization described in Trishchenko et al. (2006, 2009), and the data were mapped using a Lambert Conformal Conic (LCC ) projection (Khlopenkov et al., 2008). These data were combined to form pan-Canadian images using a technique for detection of clear sky, clouds and cloud shadows with a maximum interval of 10 days (Luo et al., 2008). Atmospheric and sun-sensor geometry corrections have not been applied. For each date, data include forward and backward scattering observations as separate files. This allows data to be optimized for a given application. For general use, data from either forward or backward scattering or both should be used. Future release of the MODIS time series will correct the forward and backward scattering geometry to provide a single best observation for each pixel.
Arctic SDI catalogue