imageryBaseMapsEarthCover
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Mackenzie Valley Air Photo Digital Orthotiles
-
AAFC’s Canadian Ag-Land Monitoring System (CALMS), operational since 2009, was developed by AAFC’s Earth Observation Service (EOS) to deliver weekly NDVI-based maps of crop condition in near-real-time. The CALMS uses data collected by the Moderate Resolution Imaging Spectro-radiometer (MODIS), a sensor mounted onboard NASA’s Terra satellite that has been acquiring data since February 2000. The state-of-the-art radiometric, spectral and spatial resolutions of MODIS Terra make it particularly well-suited for large-scale vegetation mapping and assessment. Crop condition (NDVI) maps are generated weekly by AAFC throughout Canada’s growing season, the period defined as the six-month period stretching from the start of Julian week 12 (end of March) to the end of Julian week 44 (late October). Weeks of the year are defined according to the ISO 8601 week-numbering standard, where weeks start on a Monday and end the following Sunday. CALMS products are generated in the MODIS native Integrated Sinusoidal (ISIN) projection for the region covering the twelve MODIS tiles h09v03 to h14v03 and h09v04 to h14v04.
-
McElhanney Consulting Services Ltd (MCSL) has performed a LiDAR and Imagery survey in southern Saskatchewan. The acquisition was completed between the 16th and 25th of October, 2009. The survey consisted of approximately 790 square kilometers of coverage. While collecting the LiDAR data, we also acquired aerial photo in RGB and NIR modes consisting of 1649 frames each.
-
The RADARSAT Constellation is the evolution of the RADARSAT Program with the objective of ensuring data continuity, improved operational use of Synthetic Aperture Radar (SAR) and improved system reliability. The three-satellite configuration provides daily revisits of Canada's vast territory and maritime approaches, as well as daily access to 90% of the world's surface. RCM is tasked solely by the Government of Canada, to acquire data, first and foremost in support of Government of Canada services and needs. RCM data and services contributes to ensuring the safety and security of Canadians; monitoring and protecting the environment; monitoring of climate change; managing Canada’s natural resources; and stimulating innovation, research and economic development. In addition to these core user areas, there are expected to be a wide range of ad hoc uses of RADARSAT Constellation data in many different applications within the public and private sectors, both in Canada and internationally. The current data set reflects the acquisition plans that are designed to meet the RCM SAR imaging demands of the Government of Canada. These are being made available publicly in advance of the acquisitions. To meet the data needs of the Government of Canada, acquisitions may be changed without notice. After their acquisition and processing, the RCM image products listed in the current data set, will be delivered to the Earth Observation Data Management System - EODMS (https://www.eodms-sgdot.nrcan-rncan.gc.ca/index-en.html) portal of Natural Resources Canada. Users can register to the EODMS portal as public users to retrieve the RCM image products. For those requiring a greater access to RCM imagery consisting of product types or spatial resolutions not available to public users: you may apply to upgrade your public account to an ‘RCM external vetted entity’ EODMS user type account. For more information on this process, please contact the Canadian Space Agency using the information available at the following link : https://www.asc-csa.gc.ca/eng/satellites/radarsat/access-to-data/how-to-become-a-user.asp Publication frequency : I. Future acquisition plans are published every two weeks for a two-week window that starts two weeks from the publication date. As an example, acquisition plan published on April 1st covers acquisitions from April 14 to 27. The next plan is published on April 14th and covers from April 28 to May 11. II. Past acquisitions plans are published monthly and covers a period of one month from the first to the last day As an example, acquisition plan published on April 1st covers acquisition made between the March 1 and March 31. The next plan covers the month of April.
-
BTM ( Baseline Thematic Mapping) Landsat Image Catalogue Acquisition Dates. This polygon coverage contains the date of capture of the Landsat images making up the seamless BC Landsat image catalogue. This is not a multipart feature
-
Polygons containing the date of capture of the Landsat images used to create the first version of the Baseline Thematic Mapping v1 (BTM1). This spatial view is only meaningful in conjunction with the satellite images or the BTM data derived from the satellite images. The images were captured from 1990 to 1997
-
This data publication contains a set of files in which areas affected by fire or by harvest from 1984 to 2015 are identified at the level of individual 30m pixels on the Landsat grid. Details of the product development can be found in Guindon et al (2018). The change detection is based on reflectance-corrected yearly summer (July and August) Landsat mosaics from 1984 to 2015 created from individual scenes developed from USGS reflectance products (Masek et al, 2006; Vermote et al, 2006). Briefly, the change detection method uses a six-year temporal signature centered on the disturbance year to identify fire, harvest and no change. The signatures were derived from visually-interpreted disturbance or no-change polygons that were used to fit a decision tree model. The method detects about 91% of the areas harvested and 85% of the areas burned across Canada’s forests over the study period, but overestimates areas disturbed in the two initial and mostly in the two final years of the 1985 to 2015 time series. This is caused by the absence of appropriate pre-disturbance and post-disturbance data for the model-based detection and attribution. Disturbance coverage in those four years should therefore be used with caution. As in Guindon et al (2014), the method was designed to minimize commission errors and has a disturbance class attribution success rate of about 98%. The attribution success rate of disturbance year for fire is of about 69% for the exact year and of about 99% when attribution to the following year is also considered as a success. This common one-year lag is mostly due to the use of mid-summer Landsat mosaics for the analysis that will cause spring and fall events of the same year to be attributed to successive years. For example, a fire that occurred in the fall of 2004 (after July and August), will be detected and attributed to 2005, while for a fire that occurred in the spring of 2004 will be detected and attributed to 2004. The presence of clouds and shadows or image availability causes 10% of missing data annually and therefore can too delay the capture of events. The data provides uniform spatial and temporal information on fire and harvest across all provinces and territories of Canada and is intended for strategic-level analysis. Since no attention was given to other minor disturbances such as mining, road or flooding, the product should not be used for their identification. Finally, calibration datasets were developed for only three major forest pests (mountain pine beetle, eastern spruce budworm and forest tent caterpillar), but were folded within the “no-change” class in order to minimize commission errors for fire and harvest . Less common pests for which validation datasets are hard to develop were not considered and therefore could in rare circumstances generate false fire events. Considering that area having two (3.3%) to three disturbances (less than 1%) events are not common, only the most recent disturbance is provided, overlapping older disturbances in these rare case. ## Please cite this dataset as: Guindon, L., P. Villemaire, R. St-Amant, P.Y. Bernier, A. Beaudoin, F. Caron, M. Bonucelli and H. Dorion. 2017. Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30-m resolution product of fire and harvest detection and attribution since 1984. https://doi.org/10.23687/add1346b-f632-4eb9-a83d-a662b38655ad ## Scientific article citation: The creation, validation and limitations of the CanLaD product are described in the Supplementary Material file associated with the following article: Guindon, L.; Bernier, P.Y.; Gauthier, S.; Stinson, G.; Villemaire, P.; Beaudoin, A. 2018. Missing forest cover gains in boreal forests explained. Ecosphere, 9 (1) Article e02094. doi:10.1002/ecs2.2094. ## Cited references: Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., and Lim, T-K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1):68-72. http://dx.doi.org/10.1109/LGRS.2005.857030. Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. http://dx.doi.org/10.1016/j.rse.2016.04.008.
-
Index Grid for NTS 1:250,000 scale maps
-
The dataset includes two data products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) imager operated by the US National Oceanic and Atmospheric Administration (NOAA) onboard Suomi National Polar-Orbiting Partnership (SNPP) satellite: 1) Normalized Difference Vegetation Index (NDVI) 2) Snow Mask (Snow) with supplementary information about data quality and scene identification Each product, NDVI and Snow, has been derived at two spatial resolutions: 1) I-band resolution for 250-m spatial grid (VIIRS image bands I1 and I2) 2) M-band resolution for 500-m spatial grid (VIIRS moderate resolution bands M5 and M7) Datasets are produced with a daily temporal frequency, i.e. one file per day. The study area with the size of 5,700 km × 4,800 km covers Canada and neighboring regions (Trishchenko, 2019). The VIIRS time series are produced from VIIRS /SNPP imagery at CCRS from January 1, 2017.
-
Organic soils in the boreal forest commonly store as much carbon as the vegetation above ground. While recent efforts through the National Forest Inventory has yielded new spatial datasets of forest structure across the vast area of Canada’s boreal forest, organic soils are poorly mapped. In this geospatial dataset, we produce a map primarily of forested and treed peatlands, those with more than 40 cm of peat accumulation and over 10% tree canopy cover. National Forest Inventory ground plots were used to identify the range of forest structure that corresponds to the presence of over 40 cm of peat soils. Areas containing that range of forest cover were identified using the National Forest Inventory k-NN forest structure maps and assigned a probability (0-100% as integer) of being a forested or treed peatland according to a statistical model. While this mapping product captures the distribution of forested and treed peatlands at a 250 m resolution, open, completely treeless peatlands are not fully captured by this mapping product as forest cover information was used to create the maps. The methodology used in the creation of this product is described in: Thompson DK, Simpson BN, Beaudoin A. 2016. Using forest structure to predict the distribution of treed boreal peatlands in Canada. Forest Ecology and Management, 372, 19-27. https://cfs.nrcan.gc.ca/publications?id=36751 This distribution uses an updated forest attribute layer current to 2011 from: Beaudoin A, Bernier PY, Villemaire P, Guindon L, Guo XJ. 2017. Species composition, forest properties and land cover types across Canada’s forests at 250m resolution for 2001 and 2011. Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, Canada. https://doi.org/10.23687/ec9e2659-1c29-4ddb-87a2-6aced147a990 Additionally, this distribution varies slightly from the original published in 2016 in that here slope data is derived from the CDEM: https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333 The above peatland probability map was further processed to delineate bogs vs fens (based on mapped Larix content via the k-NN maps), as well as an approximation of the extent of open peatlands using EOSD data. The result is a 9-type peatland map with a more complete methodology as detailed in: Webster, K. L., Bhatti, J. S., Thompson, D. K., Nelson, S. A., Shaw, C. H., Bona, K. A., Hayne, S. L., & Kurz, W. A. (2018). Spatially-integrated estimates of net ecosystem exchange and methane fluxes from Canadian peatlands. Carbon Balance and Management, 13(1), 16. https://doi.org/10.1186/s13021-018-0105-5 In plain text, the legend for the 9-class map is as follows: value="0" label="not peat" alpha="0" value="1" label="Open Bog" alpha="255" color="#0a4b32" value="2" label="Open Poor Fen" alpha="255" color="#5c5430" value="3" label="Open Rich Fen" alpha="255" color="#792652" value="4" label="Treed Bog" alpha="255" color="#6a917b" value="5" label="Treed Poor Fen" alpha="255" color="#aba476" value="6" label="Treed Rich Fen" alpha="255" color="#af7a8f" value="7" label="Forested Bog" alpha="255" color="#aad7bf" value="8" label="Forested Poor Fen" alpha="255" color="#fbfabc" value="9" label="Forested Rich Fen" alpha="255" color="#ffb6db" This colour scale is given in qml/xml format in the resources below. The 9-type peatland map from Webster et al 2018 was further refined slightly following two simple conditions: (1) any 250-m raster cell with greater than 40% pine content is classified as upland (non-peat); (2) all 250-m raster cells classified as water or agriculture via the NRCan North American Land Cover Monitoring System (https://doi.org/10.3390/rs9111098) is also classified as non-peatland (value of zero in the 9-class map. This mapping scheme was used at a regional scale in the following paper: Thompson, D. K., Simpson, B. N., Whitman, E., Barber, Q. E., & Parisien, M.-A. (2019). Peatland Hydrological Dynamics as A Driver of Landscape Connectivity and Fire Activity in the Boreal Plain of Canada. Forests, 10(7), 534. https://doi.org/10.3390/f10070534 And is reproduced here at a national scale. Note that this mapping product does not fully capture all permafrost peatland features covered by open canopy spruce woodland with lichen ground cover. Nor are treeless peatlands near the northern treeline captured in the training data, resulting in unknown mapping quality in those regions.
Arctic SDI catalogue