Eelgrass
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
Monitoring programs are an important component of Marine Protected Area (MPA) management, providing requisite information on the state of, and changes in, protected ecosystems. Monitoring is required to gauge the efficacy of MPAs towards their conservation objectives and provides information needed to evaluate the benefits provided to biodiversity from restricted access. However, in Nova Scotia’s coastal zone, there is a lack of baseline data, including fish diversity and community structure in macrophyte beds, which makes monitoring intractable. In 2017, the Eastern Shore Islands was identified as a coastal Area of Interest (AOI) for the potential establishment of an MPA. In 2018 an overview was conducted, detailing the spatial and temporal ecological attributes of the AOI. This information revealed a unique coastal ecosystem associated with a dense archipelago and relatively natural seascape. The abundance of plant and algal biogenic habitats within the area was assumed to host a diversity of juvenile fish species. The primary objective of this project is to begin development of a long-term biodiversity monitoring program in the Eastern Shore Islands and other coastal Areas of Interest for conservation planning. We propose implementing this program with the use of direct (beach seines, scuba diving, and stable isotope sampling) and indirect (environmental DNA - eDNA) sampling. Environmental DNA (eDNA) is a useful tool to examine marine biodiversity in a non-invasive way, on a small spatial scale. eDNA can be easily collected and filtered and is becoming increasingly cost efficient to sequence and may be a useful marine protected area monitoring tool. While eDNA generally yields comparable results to traditional sampling techniques in terms of biodiversity captured, little is known on how eDNA signals fluctuate across years (or even days to weeks). We will compare species detections using eDNA metabarcoding to visual surveys (scuba and seine nets) to census eelgrass beds across the coastal zone, providing a baseline and time series of species diversity on which to base long-term monitoring. This project will generate inventories of eelgrass bed locations, and fish and invertebrate diversity within eelgrass beds. We additionally collect fish length distribution data to examine seasonal and inter-annual trends in size structure over time. The data generated from direct and indirect sampling will provide a comprehensive and ongoing catalog of species diversity and community structure in coastal eelgrass beds, as well as best-practices for sampling eDNA in the coastal environment. Cite this data as: Jeffery, N.W., Pettitt-Wade, H., Van Wyngaarden, M., and Stanley, R.R.E. Maritimes Coastal Biodiversity Monitoring Program – Beach Seining. Published: December 2023. Coastal Ecosystems Science Division, Maritimes region, Fisheries and Oceans Canada, Dartmouth NS. https://open.canada.ca/data/en/dataset/dbbcb23a-d018-4b70-b8ec-89997aded770
-
This dataset includes metrics of eelgrass size, cover, and biomass from field sites along the Atlantic coast of Nova Scotia, Canada. Field sites were located across a gradient of environmental conditions, and field sampling was conducted in July to August 2022. Eelgrass percent cover, shoot density, and plants were sampled at 10 haphazardly distributed sampling stations within each eelgrass bed at approximately the same depth. Stations were ~10m apart and at least 2m from any eelgrass-bare interface. At each sampling station eelgrass leaves in a 0.5 x 0.5m quadrat were photographed for later computer image analysis to determine percent cover. The number of shoots were then counted in a 0.25 x 0.25m quadrat, and 3 vegetative shoots were collected. Shoots were measured for leaf length, width, and weight in the laboratory. These data were used to determine allometric and cover-biomass relationships for use in non-destructive estimation of bed biomass. Cite this data as: Wong, M.C., & Thomson, J. A. Data of eelgrass (Zostera marina) plant size (length, width), cover, and biomass from the Atlantic Coast of Nova Scotia. Published: February 2025. Coastal Ecosystems Science Division, Maritimes Region, Fisheries and Oceans Canada, Dartmouth NS. For additional information please see: Thomson, J. A., Vercaemer, B., & Wong, M. C. (2025). Non-destructive biomass estimation for eelgrass (Zostera marina): Allometric and percent cover-biomass relationships vary with environmental conditions. Aquatic Botany, 198, 103853. https://doi.org/10.1016/j.aquabot.2024.103853
-
Nekton assemblages in Zostera marina beds and adjacent bare soft-sediments were sampled on the south and eastern shore of Nova Scotia. Sampling gear used were visual snorkel transects and a benthic beam trawl. Fish were identified and size either measured (trawl) or estimated in situ (snorkel transects). Surveys were conducted in mid-July to Aug in summer of 2013 and 2014 across multiple sampling sites. Multiple replicate transects were conducted at each site. Raw abundances from observations were transformed into young of year (YOY) equivalent abundance, and then into density of each species calibrated to account for the sampling equipment and day/night differences. Cite this data as: Wong, M. C. Data of: Fish and large decapods in eelgrass (Zostera marina) beds on the Atlantic coast of Nova Scotia, Canada. Published: April 2020. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/dbc56f11-4a97-45e7-99f4-71966b51630c
-
Nearshore marine construction activities often involve projects conducted directly in or adjacent to eelgrass beds and can have detrimental effects on eelgrass health, through physical destruction of beds, smothering of plants by sediment, and light reduction from turbidity. A liquefied natural gas (LNG) marine terminal is proposed to be constructed near Goldboro in Isaacs Harbour on the Eastern shore of Nova Scotia in an area where sediments are contaminated with heavy metals from historical goldmining tailings. We conducted a pre-impact assessment of the eelgrass beds in Isaacs Harbour and in adjacent contaminated and non-contaminated harbours. We used underwater video to precisely map the eelgrass bed in the direct construction footprint in Isaacs Harbour. We surveyed 169 stations along ~40 km of coastline from Wine Harbour to New Harbour to identify eelgrass presence or absence in the nearby region and provide data on the distribution and abundance of other sensitive fish habitat such as kelp and other macrophytes. Sediment samples were collected and analyzed for grain size, organic matter content and heavy metal contamination. We also collected eelgrass plants to assess plant condition using morphological and physiological metrics, and heavy metal contamination in plant tissues. The overall condition of eelgrass plants in the surveyed area fell within the range of healthy plant characteristics (morphometrics and carbohydrates reserves) seen elsewhere along the Atlantic coast. However, a few stations displayed high arsenic and mercury contamination in sediments, which translated in some cases to high contamination in eelgrass rhizomes and leaves. There would be significant risk of impact on benthic habitat and contamination of marine biota from resuspension of sediments during a construction and operation of a ship terminal in Isaacs Harbour. This pre-impact assessment will allow DFO to assess the LNG terminal construction proposal and develop appropriate mitigation and monitoring procedures. Collected data will also be used for habitat-forming species distribution modeling to inform marine spatial and conservation planning. Vercaemer, B., O’Brien, J. M., Guijarro-Sabaniel, J. and Wong, M. C. 2022. Distribution and condition of eelgrass (Zostera marina) in the historical goldmining region of Goldboro, Nova Scotia. Can. Tech. Rep. Aquat. Sci. 3513: v + 67 p. Cite this data as: Vercaemer, B., O’Brien, J. M., Guijarro-Sabaniel, J., Wong, M. Data of: Eelgrass (Zostera marina) study in the historical goldmining region of Goldboro, Nova Scotia (2020). Published: February 2023. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/ee88aa17-fd30-4d4a-8924-897fd47cf560
-
This dataset includes metrics of seagrass productivity and resilience collected from field sites along the Atlantic coast of Nova Scotia, Canada. Field sites were located across a gradient of temperature and light conditions. Sampling was conducted monthly from May 2018 to July 2019. Seagrass density and plants were sampled at 10 haphazardly distributed sampling stations within each seagrass bed at approximately the same depth. Stations were ~10m apart and at least 2m from any seagrass-bare interface. Quadrats were used to determine vegetative and reproductive shoot density, and hand corers to collect seagrass above and belowground biomass. Three plants from each sampling station were also collected and processed in the laboratory for length and width leaf 3, number leaves per shoot, rhizome width, and rhizome water soluble carbohydrates. Also included in this data set are time-series records of bottom temperature at each site measured in 15-mins intervals using HOBO TidbiTv2 loggers. Cite this data as: Wong, Melisa C., and Michael Dowd. 2023. “The Role of Short-Term Temperature Variability and Light in Shaping the Phenology and Characteristics of Seagrass Beds.” Ecosphere 14(11): e4698. https://doi.org/10.1002/ecs2.4698
-
This dataset includes metrics of eelgrass traits related to bed structure, morphology, and physiology from field sites along the Atlantic coast of Nova Scotia, Canada. Field sites were located across a gradient of temperature and light conditions. Sampling was conducted in July to August, in 2017, 2021, and 2022. Seagrass density and plants were sampled at 10 haphazardly distributed sampling stations within each seagrass bed at approximately the same depth. Stations were ~10m apart and at least 2m from any seagrass-bare interface. Quadrats were used to determine vegetative and reproductive shoot density. Three plants from each sampling station were collected and processed in the laboratory for length and width leaf 3, number leaves per shoot, rhizome width, rhizome water soluble carbohydrates, and total leaf chlorophyll. Also included in this data temperature and light metric that summarize temperature and light conditions during the summer period. Cite this data as: Wong, M.C., Dowd, M. Data of eelgrass (Zostera marina) traits from the Atlantic Coast of Nova Scotia. Published: February 2025. Coastal Ecosystems Science Division, Maritimes Region, Fisheries and Oceans Canada, Dartmouth NS. For additional information please see: Wong, M.C., Dowd, M. Eelgrass (Zostera marina) Trait Variation Across Varying Temperature-Light Regimes. Estuaries and Coasts 48, 13 (2025). https://doi.org/10.1007/s12237-024-01439-3
-
The layer presents the information on the distribution of eelgrass (Zostera marina) beds in James Bay, Chaleur Bay, Estuary and Gulf of St. Lawrence according to a literature review of documents produced between 1987 and 2009. Additional Information Eelgrass's inventory was produced according to a literature review of the following documents: Calderón, I. 1996. Caractérisation de la végétation et de la faune ichtyenne de la baie de Sept-Îles. Document réalisé par la Corporation de protection de l'environnement de Sept-Îles pour Pêches et Océans Canada. 26p. + 5 annexes. Comité côtier Les Escoumins à la Rivière Betsiamites. 2004. Inventaire de localisation des bancs de zostère marine dans la zone côtière Les Escoumins à la rivière Betsiamites. 9 p. Comité ZIP Côte-Nord du Golfe. 2001. Inventaire du potentiel côtier et marin de la Basse-Côte-Nord. Version préliminaire de rapport sous forme de CD-ROM, Sept-Îles, mars 2001. Comité ZIP de la rive nord de l’estuaire. 2008. Guide d’intervention en matière de protection et de mise en valeur des habitats littoraux d’intérêt de la rive nord de l’estuaire maritime (fiches 14 à 20). 8 p. + 7 fiches + annexe. Conseil Régional de l’Environnement Gaspésie et des Îles-de-la-Madeleine (2004). Inventaire et étude des bancs de zostère marine sur le territoire couvert par les comités de gestion intégrée de la zone côtière de l’Est du Québec. CONSORTIUM GAUTHIER & GUILLEMETTE - G.R.E.B.E. 1992. Description et cartographie des habitats côtiers de la Baie de Hannah jusqu'à la rivière au Castor. Rapport présenté à Hydro-Québec, Complexe Nottaway-Broadback-Rupert (NBR), Vol. 2, Annexe cartographique. Giguère, M., C. Duluc, S. Brulotte, F. Hazel, S. Pereira et M. Gaudet. 2006. Inventaire d’une population d'huître américaine (Crassostrea virginica) dans le Bassin aux Huîtres aux Îles-de-la-Madeleine en 2005. Rapport manuscrit. vi + 21 p. Grant, C. et L. Provencher, 2007. Caractérisation de l’habitat et de la faune des herbiers de Zostera marina (L.) de la péninsule de Manicouagan (Québec). Rapp. tech. can. sci. halieut. aquat. 2772 : viii + 65 p. Groupe Environnement Littoral. 1992. Complexe NBR. La zostère marine. Rapport présenté à la vice-présidence Environnement d'Hydro-Québec. 9 p. + 2 cartes. Harvey, C. et D. Brouard. 1992. Étude exploratoire du barachois de Chandler: aspects biophysiques et contamination. Rapport présenté à Environnement Canada, Direction de la protection de l'environnement région du Québec. 39 p. et annexes. Hazel, François, 2002. Données de terrain prises par F. Hazel, Septembre 2002. Ellefsen, H.-F. 2009. Communication personnelle de Hans-Frédéric Ellefsen (MPO). Jacquaz et coll. 1990. Étude biophysique de l'habitat du poisson de quatre barachois de la baie des Chaleurs. Kedney, G. et P. Kaltenback. 1996. Acquisition de connaissances et mise en valeur des habitats du banc de Portneuf. Document réalisé par la firme Pro Faune pour le Comité touristique de Rivière-Portneuf. 50 pages et 5 annexes. Lalumière, R. 1987. Répartition de la zostère marine (Zostera marina) sur la côte est de la baie James; été 1987. Rapport produit par Gilles Shooner et Associés inc. pour la Société d’énergie de la Baie James. 30 p. et annexes. Lalumière, R., L. Belzile et C. Lemieux. 1992. Étude de la zostère marine le long de la côte nord-est de la baie James (été 1991). Rapport présenté au Service écologie de la SEBJ. 31 p. + carte. Leblanc, J. 2002. Communication personnelle de Judith Leblanc (MPO). Lemieux, C. 1995. Acquisition de connaissances des habitats côtiers dans la région de Rimouski (1995). Rapport du Groupe-Conseil GENIVAR présenté au Ministère des Pêches et des Océans du Canada, Division de la Gestion de l’Habitat du Poisson, 52 pages + 2 annexes. Lemieux, C. et R. Lalumière. 1995. Acquisition de connaissances des habitats côtiers du barachois de Saint-Omer. Rap. du Groupe conseil Genivar inc. pour la DGHP, MPO, 44 pages + 3 ann. Martel, Marie-Claude, Lizon Provencher, Cindy Grant, Hans-Frédéric Ellefsen et Selma Pereira, 2009. Distribution and description of eelgrass beds in Québec. Fisheries and Oceans Canada, Canadian Science Advisory Secretariat, Research Document 2009/050. 45p. Morin, D. 2009. Communication personnelle de Danièle Morin (MRNF). Naturam Environnement. 1999. Caractérisation biophysique, socio-économique et détermination des enjeux dans un secteur potentiel pour l’identification d’une zone de protection marine pilote: portion ouest de la MRC Manicouagan. Baie-Comeau. 311 p. Pelletier, Claudel. 2003. Communication personnelle de Claudel Pelletier, FAPAQ, lettre en date du 24 février 2003. Pereira, S. 2009. Communication personnelle de Selma Pereira (MPO). Vaillancourt, M.-A. et C. Lafontaine. 1999. Caractérisation de la Baie Mitis. Jardins de Métis et Pêches et Océans Canada. Grand-Métis. 185 p.
-
Eelgrass (Zostera marina) is important to waterfowl such as Atlantic Brant (Branta bernicla hrota), Canada Goose (Branta canadensis), American Black Duck (Anas rubripes), Common Goldeneye (Bucephala clangula) and Barrow's Goldeneye (Bucephala islandica). In New Brunswick eelgrass can be found along the Gulf of St. Lawrence, in protected harbours. Within this dataset are the results eelgrass land-cover classifications using either satellite or aerial photography for eight harbours: Bouctouche (46 30’N, 64 39’W); Cocagne (46.37 N, -64.60 W); Miscou (47.90 N, -64.55 W); Neguac (47.25 N, -65.03 W); Richibucto (46.70 N, -64.80 W); Saint-Simon (47.77 N, -64.76 W); Tabusintac (47.33 N, -64.93 W); and Tracadie (47.55 N, -64.88 W). Information on each dataset is provided: Visible orthorectified aerial photography was used to classify polygons containing eelgrass in Cocagne Harbour. Field data for image training and validation were collected along transects in summer 2008 using a dGPS positioned towfish holding sidescan sonar and a video camera that was later transcribed as XY geographic points to describe eelgrass presence and a qualitative description of density. The area was flown for photography on September 24, 2008. eCognition Developer 8 software was used to segment the imagery, essentially polygons. Polygons were then classified manually for the presence of eelgrass. Using field data revealed eelgrass presence to be mapped correctly 87.2% of the time.
-
The Planning for an Environmental Response (PIER) initiative falls under the umbrella of the Government of Canada’s Oceans Protection Plan (OPP), whose goal is preserving marine ecosystems vulnerable to increased transportation and the development of the marine industry. The PIERs’ main mandate is to acquire and update biological sensitivity data under its jurisdiction for preparation and response purposes in the event of an oil spill. This dataset contains all observations of marine organisms noted during the analysis of 2959 underwater images sampled over a large extent of the coastal zone (≤10 m) of the Estuary and the Gulf of St. Lawrence (Quebec region). The dataset includes 21 490 occurrences of 150 taxa and informal categories including macroalgae, invertebrates and fish. Underwater images were collected between 2017 and 2021 according to a directed sampling protocol whose primary goal was to map large seaweed and eelgrass beds. Images were normally recorded as videos using a GoPro Hero camera installed on a pole and placed near the seabed from a small boat. The collected data served primarily as ground-truth data to validate coasting zone mapping based on aerial photographs within the framework of the PIER's initiative. The two files provided (DarwinCore format) are complementary and are linked by the "eventID" key. The "event_information" file includes generic event information, including date and location. The "taxon_occurrence" file includes the original identifiers of the observed organisms (verbatimIdentification field), identification remarks and their taxonomy. Taxonomic names were verified on the World Register of Marine Species (WoRMS) to match recognized standards. The WoRMS match has been put in the scientificNameID field in the occurrence file. Data quality control was performed using the R packages obistools and worrms. All sampling locations were plotted on a map to perform a visual check confirming that the latitude and longitude coordinates were within the described sampling area. A visual dictionary was developed as an identification aid and accompanies this dataset (unilingual french only, the English version will be published soon). More data, including a visibility index, estimated macroalgae and eelgrass cover, substrate type and dominant macroalgae and animals were recorded but not included in this dataset. These data may be made available upon request. Credits Provencher-Nolet, L., Paquette, L., Pitre, L.D., Grégoire, B. and Desjardins, C. 2024. Cartographie des macrophytes estuariens et marins du Québec. Rapp. Tech. Can. Sci. halieut. Aquat. 3617 : v + 99 p. Grégoire, B., Pitre, L.D., Provencher-Nolet, L., Paquette, L. and Desjardins, C. 2024. Distribution d’organismes marins de la zone côtière peu profonde du Québec recensés par imagerie sous-marine de 2017 à 2021. Rapp. tech. can. sci. halieut. aquat. 3616 : v + 78 p.
-
The Planning for an Environmental Response (PIER) initiative falls under the umbrella of the Government of Canada's Oceans Protection Plan (OPP), whose goal is preserving marine ecosystems vulnerable to increased transportation and the development of the marine industry (https://pm.gc.ca/en/news/backgrounders/2016/11/07/canadas-oceans-protection-plan-preserving-and-restoring-canadas). The PIER was established in response to recommendations made in a 2013 report "A review of Canada's ship-source spill preparedness and response regime " by the Tanker Safety Expert Panel (https://tc.canada.ca/en/marine-transportation/marine-safety/tanker-safety-expert-panel). One of the recommendations calls on Fisheries and Oceans (DFO) to work with Environment and Climate Change Canada (ECCC) to collect and compile information on sensitive species and environments for each Canadian Coast Guard (CCG) response area and make it publicly available. The PIERs’ main mandate is to acquire and update biological sensitivity data under its jurisdiction for preparation and response purposes in the event of an oil spill. With DFO-Science, PIER supports ECCC's National Environmental Emergencies Centre (NEEC) and the CCG in their preparations and responses through the sharing of data on biological sensitivities, the development of response tools and expert advice. In this vein, DFO published an analysis in 2018 that aimed to identify the most vulnerable components of the St. Lawrence in order to prioritize them during data collection if gaps were identified (Desjardins et al. 2018). This exercise highlighted the vulnerability of several biological components and important data gaps, particularly in coastal areas. As a result of this finding, the Quebec region PIEI team embarked on a collaborative project with the Université du Québec à Rimouski (UQAR) to map eelgrass beds, tidal marshes and macroalgal beds. In consultation with other DFO-Science data producers, this team has also created datasets adapted for response purposes, notably regarding bivalves and marine mammals. These layers may be used for oil spill preparedness and response by DFO-Quebec Region's Environmental Incident Coordinator, NEEC and CCG. Several of them, deemed relevant in the first 72 hours following a spill, have been transmitted to the NEEC.