Keyword

Forest fires

25 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
Resolution
From 1 - 10 / 25
  • Fire weather refers to weather conditions that are conducive to fire. These conditions determine the fire season, which is the period(s) of the year during which fires are likely to start, spread and do sufficient damage to warrant organized fire suppression. The length of fire season is the difference between the start- and end-of-fire-season dates. These are defined by the Canadian Forest Fire Weather Index (FWI; http://cwfis.cfs.nrcan.gc.ca/) start-up and end dates. Start-up occurs when the station has been snow-free for 3 consecutive days, with noon temperatures of at least 12°C. For stations that do not report significant snow cover during the winter (i.e., less than 10 cm or snow-free for 75% of the days in January and February), start-up occurs when the mean daily temperature has been 6°C or higher for 3 consecutive days. The fire season ends with the onset of winter, generally following 7 consecutive days of snow cover. If there are no snow data, shutdown occurs following 7 consecutive days with noon temperatures lower than or equal to 5°C. Historical climate conditions were derived from the 1981–2010 Canadian Climate Normals. Future projections were computed using two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: difference in projected fire season length for the long-term (2071-2100) under the RCP 2.6 (rapid emissions reductions) compared to reference period across Canada.

  • Fire weather refers to weather conditions that are conducive to fire. These conditions determine the fire season, which is the period(s) of the year during which fires are likely to start, spread and do sufficient damage to warrant organized fire suppression. The length of fire season is the difference between the start- and end-of-fire-season dates. These are defined by the Canadian Forest Fire Weather Index (FWI; http://cwfis.cfs.nrcan.gc.ca/) start-up and end dates. Start-up occurs when the station has been snow-free for 3 consecutive days, with noon temperatures of at least 12°C. For stations that do not report significant snow cover during the winter (i.e., less than 10 cm or snow-free for 75% of the days in January and February), start-up occurs when the mean daily temperature has been 6°C or higher for 3 consecutive days. The fire season ends with the onset of winter, generally following 7 consecutive days of snow cover. If there are no snow data, shutdown occurs following 7 consecutive days with noon temperatures lower than or equal to 5°C. Historical climate conditions were derived from the 1981–2010 Canadian Climate Normals. Future projections were computed using two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: difference in projected fire season length for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases) compared to reference period across Canada.

  • Fire weather refers to weather conditions that are conducive to fire. These conditions determine the fire season, which is the period(s) of the year during which fires are likely to start, spread and do sufficient damage to warrant organized fire suppression. The length of fire season is the difference between the start- and end-of-fire-season dates. These are defined by the Canadian Forest Fire Weather Index (FWI; http://cwfis.cfs.nrcan.gc.ca/) start-up and end dates. Start-up occurs when the station has been snow-free for 3 consecutive days, with noon temperatures of at least 12°C. For stations that do not report significant snow cover during the winter (i.e., less than 10 cm or snow-free for 75% of the days in January and February), start-up occurs when the mean daily temperature has been 6°C or higher for 3 consecutive days. The fire season ends with the onset of winter, generally following 7 consecutive days of snow cover. If there are no snow data, shutdown occurs following 7 consecutive days with noon temperatures lower than or equal to 5°C. Historical climate conditions were derived from the 1981–2010 Canadian Climate Normals. Future projections were computed using two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: difference in projected fire season length for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases) compared to reference period across Canada.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. The number of large fires refers to the annual number of fires greater than 200 hectares (ha) that occur per units of 100,000 ha. It was calculated per Homogeneous Fire Regime (HFR) zones. These HFR zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected number of large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: annual area burned by large fires (>200 ha) across Canada for a reference period (1981-2010). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    This data publication contains a set of files in which different variables related to fire burned severity (Canada Landsat Burned Severity, CanLaBS) were computed for all events in Canada between 1985 and 2015 as detected by the Canada Landsat Disturbance (CanLaD (Guindon et al. 2017 and 2018) product. Details on the creation of this product are available in Guindon et al. 2020 (https://doi.org/10.1139/cjfr-2020-0353) and in supplementary materials accompanying the publication. The current document is therefore a complement to the article and supplementary materials. The supplementary materials are referenced in the publication (cjfr-2020-0353suppla, cjfr-2020-0353supplb etc.). This is the first Canada-wide product that aims to promote nationwide research on fire severity by making available the data used in the article. The data is in the form of grids composed of pixels at a resolution of 30m. To simplify the distribution and manipulation of the data and considering that two or three fire occurrences within a given location is rare (respectively 2.3% and less than 0.01%), only the most recent fire data are considered in the final product. For these very rare cases, from 2015 to 1985, the most recent burned areas overlap the older data. Overlapping fire count can be found in layer “CanLaBS_Nbdisturb_v0”, multiple fire events in same areas have values equal to or greater than two. Landsat radiometric values for calculating the NBR index were derived from summer Landsat mosaics (July and August), for years 1984 to 2015 (Guindon et al. 2018). These mosaics were developed from individual USGS Landsat scenes with surface reflectance correction (Masek et al., 2006; Vermote et al., 2006). For each annual compound, the pixel with the less atmospheric opacity was selected. An algorithm was also developed to remove clouds that were not detected by the cloud masks provided with the USGS data. Here is a general description of the layers provided and a more technical description can be found in Table 1 (see "Ressources" section below): 1. NBR and dNBR. All these values are multiplied by 1000. The value of dNBR represents the value obtained for NBRpre - NBRpost. It is calculated for each pixel that was classified as a fire in CanLaD, according to the corrected year (see cjfr-2020-0353suppla). 2. Year of fire. The fire years detected in CanLaD (Guindon et al. 2018) was corrected using different fire databases, this layer contains the correct year. (see cjfr-2020-0353suppla) 3. Julian Days of the Fire, based on various high-resolution products. However, this variable is only available from 1989 onwards. 4. Presence of salvage logging one year after the fire. Classification of satellite images detecting scarified soils (see cjfr-2020-0353suppld). 5. Pre-fire forest attributes: Pre-fire forest attributes values were calculated for median mosaics, from 1985 to 2000. These attributes values were derived from NFI (national forest inventory) photo-plot attributes and were spatialized. Pre-fire attribute values were created to stratify the analyses (see cjfr-2020-0353supplc). The predicted variables are as follows: • Canopy density in percent. • Predicted living biomass in tonnes per hectare. • Percentage coniferous biomass proportion of total biomass. • Percentage hardwood biomass proportion of total biomass. • Percentage unknown species biomass proportion of total biomass. Note, as unknown species are found especially in northern areas, they are considered coniferous for the purpose of the article. 6. Missing remote sensing data, one year after the fire. The estimation of burned severity needs NBR data (NBRpost) in the next year after fire occurrences. NBRpost is available for 91% of the cases, but for the remaining 9%, no data were available due to the presence of clouds. For these cases, satellite data from the years following the fire were used with a regression radiometry correction. This gives values to missing data for year following the fire. This layer flags the areas that have derived data. The values of 1= one year after the fire (no regression), 2= two years after the fire (regression), 3= three years after the fire (regression) and 4= four years after the fire (no regression, set as missing data). (see cjfr-2020-0353supplb). 7. Areas with more than one fire disturbance between 1985 and 2015 (1=one single disturbance, 2=two or more, 3=three or more). ## Data citation: 1. Guindon, L., Villemaire P., Manka F., Dorion H. , Skakun R., St-Amant R., Gauthier S. : Canada Landsat Burned Severity (CanLaBS): a Canada-wide Landsat-based 30-m resolution product of burned severity since 1985 https://doi.org/10.23687/b1f61b7e-4ba6-4244-bc79-c1174f2f92cd 2. The creation, the validation and the limits of the CanLaBS product are describe in the text and supplementary material: Guindon, L., Gauthier, S., Manka, F., Parisien, MA, Whitman, E., Bernier, P., Beaudoin, A., Villemaire P., Skakun R. Trends in wildfire burn severity across Canada, 1985 to 2015 https://doi.org/10.1139/cjfr-2020-0353 ## References cited: 1. Guindon, L., Villemaire, P., St-Amant, R., Bernier, P.Y., Beaudoin, A., Caron, F., Bonucelli, M., and Dorion, H. 2017. Canada Landsat Disturbance (CanLaD): a Canada-wide Landsat-based 30m resolution product of fire and harvest detection and attribution since 1984. https://doi.org/10.23687/add1346b-f632-4eb9-a83d-a662b38655ad 2. Guindon, L., Bernier, P., Gauthier, S., Stinson, G., Villemaire, P., & Beaudoin, A. (2018). Missing forest cover gains in boreal forests explained. Ecosphere, 9(1), e02094. https://doi.org//10.1002/ecs2.2094 3. Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., and Lim, T-K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1):68-72. http://dx.doi.org/10.1109/LGRS.2005.857030. 4. Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. http://dx.doi.org/10.1016/j.rse.2016.04.008.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 2.6 (rapid emissions reductions). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem. Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications. Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Multiple layers are provided. First, the annual area burned by large fires (>200 ha) is shown across Canada for a reference period (1981-2010). Projected annual area burned layers are available for the short- (2011-2040), medium- (2041-2070), and long-term (2071-2100) under the RCP 8.5 (continued emissions increases) and, for the long-term (2071-2100), under RCP 2.6 (rapid emissions reductions). Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.

  • Categories  

    The Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) carries out physics and chemistry calculations, including emissions from active wildfires, to arrive at deterministic predictions of chemical species concentration of interest to air quality, such as fine particulate matter PM2.5 (2.5 micrometers in diameter or less). Geographical coverage is Canada and the United States. Data is available at a horizontal resolution of 10 km. While the system encompasses more than 80 vertical levels, data is available only for the surface level. The products are presented as historical, annual or monthly, averages which highlight long-term trends in cumulative effects on the environment.