From 1 - 10 / 15
  • The surveys are conducted along the sandspit and within a 96 ha lagoon that encompasses mudflats, eelgrass beds, and saltmarsh at the northwest end of Sidney Island, located in the Strait of Georgia, British Columbia. The survey counts numerate two species, Western Sandpiper (Calidris mauri) and Least Sandpiper (Calidris minutilla), during a portion of the southern migration period (July, August, and early September), and have been conducted intermittently since 1990. Sidney Island (48°37’39’N, 123°19’30”W) is located within the Salish Sea (Strait of Georgia), 4 km off the coast of Vancouver Island in southwestern British Columbia, Canada. Southbound Western and Least Sandpipers stop over within Sidney Spit Marine Park (part of the Gulf Islands National Park Reserve), roosting and feeding along the sandspit and within a 96 ha lagoon that encompasses mudflats, eelgrass beds, and saltmarsh at the northwest end of the island. These species are the most numerous shorebird species using the area during southern migration. Adults precede juveniles, arriving at the end of June and throughout July. Juveniles reach the site in early August, with their numbers trailing off in early September. As a result, the site experiences a transition from purely adult to purely juvenile flocks over the course of the season. Daily counts, beginning in early July and ending in early September, were conducted in 1990 and from 1992-2001 (no counts occurred in 1991). Effort was reduced to weekly surveys between 2002 and 2013. Over the entire monitoring period median survey effort was 9 counts annually. All counts were conducted at the low tide of the day, when shorebirds were feeding in the exposed mudflat of the lagoon. Observers walked along the shore of the lagoon stopping periodically at vantage points to look for birds. For ease of data recording and to keep track of individual flocks, the survey area was divided into separate units demarcated by prominent geographical features. Counts were made with the unaided eye, through binoculars, and with a 20 – 60x zoom spotting scope, depending on the proximity of the birds. All individuals in small flocks were counted and individuals in large flocks were estimated by counting in groups of 5, 10, 50 or 100 according to flock size in each successive field of view across a scan of the entire flock. Between 1990 and 2001, when daily counts were conducted, birds were occasionally counted more than once in a day. The largest count value obtained was used as the daily estimate for these days. For smaller flocks, we were able to identify all individual birds to species and age-class. Sub-samples from larger flocks were also aged (adult or juvenile) and identified to species. Birds were aged by plumage characteristics. Adult Western Sandpipers are distinguished from juveniles by the dark chevron markings present along the sides and breast. Juvenile Least Sandpipers have a buffy breast compared to the distinct, darker one of the adult, and juveniles have bright rufous scapulars compared to the drab feather-edges of the adults. In both species, juvenile plumage appears brighter and cleaner than adult plumage, which is more worn and tattered.

  • Categories  

    As part of a scientific assessment of critical habitat for boreal woodland caribou (Environment Canada 2011, see full reference in accompanying documentation), Environment Canada's Landscape Science and Technology Division was tasked with providing detailed anthropogenic disturbance mapping, across known caribou ranges, as of 2015. This data comprises a 5-year update to the mapping of 2008-2010 disturbances, and allows researchers to better understand the attributes that have a known effect on caribou population persistence. The original disturbance mapping was based on 30-metre resolution Landsat-5 imagery from 2008 -2010. The mapping process used in 2010 was repeated using 2015 Landsat imagery to create a nationally consistent, reliable and repeatable geospatial dataset that followed a common methodology. The methods developed were focused on mapping disturbances at a specific point of time, and were not designed to identify the age of disturbances, which can be of particular interest for disturbances that can be considered non-permanent, for example cutblocks. The resultant datasets were used for a caribou resource selection function (habitat modeling) and to assess overall disturbance levels on each caribou ranges. Anthropogenic disturbances within 51 caribou ranges across Canada were mapped. The ranges were defined by individual provinces and territories across Canada. Disturbances were remapped across these ranges using 2015 Landsat-8 satellite imagery to provide the most up-to-date data possible. As with the 2010 mapping project, anthropogenic disturbance was defined as any human-caused disturbance to the natural landscape that could be visually identified from Landsat imagery with 30-metre multi-band imagery at a viewing scale of 1:50,000. A minimum mapping unit MMU of 2 ha (approximately 22 contiguous 30-metre pixels) was selected. Each disturbance feature type was represented in the database by a line or polygon depending on their geometric description. Polygonal disturbances included: cutblocks, mines, reservoirs, built-up areas, well sites, agriculture, oil and gas facilities, as well as unknown features. Linear disturbances included: roads, railways, powerlines, seismic exploration lines, pipelines, dams, air strips, as well as unknown features. For each type of anthropogenic disturbance, a clear description was established (see Appendix 7.2 of the science assessment) to maintain consistency in identifying the various disturbances in the imagery by the different interpreters. Features were only digitized if they were visible in the Landsat imagery at the prescribed viewing scale. A 2nd interpreter quality-control phase was carried out to ensure high quality, complete and consistent data collection. For this 2015 update an additional, separate higher-resolution database was created by repeating the process using 15-metre panchromatic imagery. For the 30-metre database only, the line and poly data were buffered by a 500-metre radius, representing their extended zone of impact upon boreal caribou herds. Additionally, forest fire polygons were merged into the anthropogenic footprint in order to create an overall disturbance footprint. These buffered datasets were used in the calculation of range disturbance levels and for integrated risk assessment analysis.

  • Categories  

    Data Sources: Banque informatisée des oiseaux de mer au Québec (BIOMQ: ECCC-CWS Quebec Region) Atlantic Colonial Waterbird Database (ACWD: ECCC-CWS Atlantic Region).. Both the BIOMQ and ACWD contain records of individual colony counts, by species, for known colonies located in Eastern Canada. Although some colonies are censused annually, most are visited much less frequently. Methods used to derive colony population estimates vary markedly among colonies and among species. For example, census methods devised for burrow-nesting alcids typically rely on ground survey techniques. As such, they tend to be restricted to relatively few colonies. In contrast, censuses of large gull or tern colonies, which are geographically widespread, more appropriately rely on a combination of broad-scale aerial surveys, and ground surveys at a subset of these colonies. In some instances, ground surveys of certain species are not available throughout the study area. In such cases, consideration of other sources, including aerial surveys, may be appropriate. For example,data stemming from a 2006 aerial survey of Common Eiders during nesting, conducted by ECCC-CWS in Labrador, though not yet incorporated in the ACWD, were used in this report. It is important to note that colony data for some species, such as herons, are not well represented in these ECCC-CWS databases at present. Analysis of ACWD and BIOMQ data (ECCC-CWS Quebec and Atlantic Regions): Data were merged as temporal coverage, survey methods and geospatial information were comparable. Only in cases where total counts of individuals were not explicitly presented was it necessary to calculate proxies of total counts of breeding individuals (e.g., by doubling numbers of breeding pairs or of active nests). Though these approaches may underestimate the true number of total individuals associated with a given site by failing to include some proportion of the non-breeding population (i.e., visiting adult non-breeders, sub-adults and failed breeders), tracking numbers of breeding individuals (or pairs) is considered to be the primary focus of these colony monitoring programs.In order to represent the potential number of individuals of a given species that realistically could be and may historically have been present at a given colony location (see section 1.1), the maximum total count obtained per species per site since 1960 was used in the analyses. In the case of certain species,especially coastal piscivores (Wires et al. 2001; Cotter et al. 2012), maxima reached in the 1970s or 1980s likely resulted from considerable anthropogenic sources of food, and these levels may never be seen again. The effect may have been more pronounced in certain geographic areas. Certain sites once used as colonies may no longer be suitable for breeding due to natural and/or human causes, but others similarly may become suitable and thus merit consideration in long-term habitat conservation planning. A colony importance index (CII) was derived by dividing the latter maximum total count by the potential total Eastern Canadian breeding population of that species (the sum of maximum total counts within a species, across all known colony sites in Eastern Canada). The CII approximates the proportion of the total potential Eastern Canadian breeding population (sum of maxima) reached at each colony location and allowed for an objective comparison among colonies both within and across species. In some less-frequently visited colonies, birds (cormorants, gulls, murres and terns, in particular) were not identified to species. Due to potential biases and issues pertaining to inclusion of these data, they were not considered when calculating species’ maximum counts by colony for the CII. The IBA approach whereby maximum colony counts are divided by the size of the corresponding actual estimated population for each species (see Table 3.1.2; approximate 1% continental threshold presented) was not used because in some instances individuals were not identified to species at some sites, or population estimates were unavailable.Use of both maxima and proportions of populations (or an index thereof) presents contrasting, but complementary, approaches to identifying important colonial congregations. By examining results derived from both approaches, attention can be directed at areas that not only host large numbers of individuals, but also important proportions of populations. This dual approach avoids attributing disproportionate attention to species that by their very nature occur in very large colonies (e.g., Leach’s Storm Petrel) or conversely to colonies that host important large proportions of less-abundant species (Roseate Tern, Caspian Tern, Black-Headed Gull, etc.), but in smaller overall numbers. Point Density Analysis (ArcGIS Spatial Analyst) with kernel estimation, and a 10-km search radius,was used to generate maps illustrating the density of colony measures (i.e., maximum count by species,CII by species), modelled as a continuous field (Gatrell et al. 1996). Actual colony locations were subsequently overlaid on the resulting cluster map. Sites not identified as important should not be assumed to be unimportant.

  • Categories  

    Sidney Island Shorebird Surveys transects area feature.

  • Categories  

    The Great Lakes Migrant Waterfowl Surveys provide periodic data on waterfowl abundance, spatial and temporal distributions, and use along the shorelines of major water bodies and river systems in Ontario during mostly during spring and fall, and to a lesser extent during summer and winter, seasons. The primary survey area covers the shoreline and nearshore (~1km) waters of the Lower Great Lakes region of Ontario, specifically including the St. Lawrence River, Lake Ontario, Niagara River, Lake Erie, Detroit River and Lake St. Clair and associated major marshes and embayments. Aerial surveys, typically flown several times within spring (March –May: 1969, 1971, 1972, 1975 –1979, 1981, 1982, 1984 –1988, 1991 –1996, 1998 –2003 & 2009 –2011) and fall (September –December: 1968, 1970, 1971, 1974 –2003 & 2009 –2011) survey periods, have been conducted periodically on a relatively regular basis (approx. 5-10 years) along the Lower Great Lakes shorelines between 1968 and 2011. Smaller-scale surveys also have been conducted periodically during summer (June –August: 1968 –1970, 1972, 1974, 1975, 1977, 1982, 1984, 1986, 1989, 1999 & 2002) in this region. This survey often has been conducted in conjunction with the Midwinter Survey, so its data (up to 2004) also are included in the CWS Migrant Waterfowl Surveys database (Year ≥2004 & Month = January & February).Data from several aerial surveys conducted periodically during the non-breeding period outside the Lower Great Lakes region also are included in this database. Spring and fall surveys have been conducted along the shorelines and nearshore waters of the Upper Great Lakes region of Ontario, specifically at St. Clair River (Fall 2012 & 2013), Lake Huron (Fall 1973, 1996; Spring 1974) / Georgian Bay (Fall 1973, 1996, 2012 & 2013) & Lake Superior (Fall 2000). Aerial surveys also have been conducted inland in southeastern Ontario along the Rideau River (Fall 1998 & Spring 1999).

  • Categories  

    Sidney Island Shorebirds Survey transects line feature.

  • Categories  

    The Canadian Breeding Bird Census (BBC) Database contains data for 928 breeding bird plot censuses representing all known censuses of breeding birds carried out in Canada during the period 1929–1993. The 928 records in the database represent 640 unique census plots located in all provinces and territories, except Prince Edward Island. The BBC, which was replaced by the current Breeding Bird Survey, is one of the longest-running surveys of bird populations in North America, and was designed to help determine abundance and distribution patterns of bird species. An important feature of the BBC Database is the habitat data associated with each census plot. The most prevalent vegetation species in different layers (canopy, shrub and ground cover) were recorded to reflect the assumption that birds respond principally to vegetative structure.

  • Categories  

    The atlas provides printable maps, Web Services and downloadable data files representing seabirds at-sea densities in eastern Canada. The information provided on the open data web site can be used to identify areas where seabirds at sea are found in eastern Canada. However, low survey effort or high variation in some areas introduces uncertainty in the density estimates provided. The data and maps found on the open data web site should therefore be interpreted with an understanding of this uncertainty. Data were collected using ships of opportunity surveys and therefore spatial and seasonal coverage varies considerably. Densities are computed using distance sampling to adjust for variation in detection rates among observers and survey conditions. Depending on conditions, seabirds can be difficult to identify to species level. Therefore, densities at higher taxonomic levels are provided. more details in the document: Atlas_SeabirdsAtSea-OiseauxMarinsEnMer.pdf. By clicking on "View on Map" you will visualize a example of the density measured for all species combined from April to July - 2006-2020. ESRI REST or WMS map services can be added to your web maps or opened directly in your desktop mapping applications. These are alternatives to downloading and provide densities for all taxonomical groups and species as well as survey effort.

  • Categories  

    Grids surveyed is a polygon feature class containing the 5’ latitude by 5’ longitude grid cells surveyed for all seasons combined including the grids that were surveyed but where no species were seen. In order to produce maps for a specific season a selection for these grids must be performed.