inlandWaters
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Hydrography (HY) Iceland is one of 12 themes in the European Location Project (ELF). The purpose of ELF is to create harmonised cross-border, cross-theme and cross-resolution pan-European reference data from national contributions. The goal is to provide INSPIRE-compliant data for Europe. A description of the ELF (European Location Project) is here: http://www.elfproject.eu/content/overview Encoding: INSPIRE version 4
-
Útlínur dregnar eftir uppréttum loftmyndum frá Loftmyndum ehf. og einnig eftir Landsat 8 gervihnattamyndum á nokkrum stöðum.
-
The Agriculture and Agri-Food Canada’s (AAFC) Watersheds Project level series supplies a number of watershed and watershed related datasets for the Prairie Provinces. The levels are greater or smaller assemblages of hydrometric areas, or the components defining them. The Project is organized by hydrometric gauging stations which are sourced from Environment Canada, the United States, and Canadian provinces. Additional stations were generated to address structural issues, like river confluences or lake inlets. Collectively, they are referred to as the gauging stations, or simply, the stations. The drainage area that each station monitors, between itself and one or more of its upstream neighbours, is called an ‘incremental gross drainage area’. The incremental gross drainage areas are collected into larger or smaller groupings based on size or defined interest to generate the various ‘levels ’of the series. They include: Basins of varying size: 1. Major drainage systems (3): Arctic Ocean, Hudson Bay and Gulf of Mexico; 2. Major basins (23): associated with river or lake reaches; 3. Project sub-basins (47): created specifically for the project; 4. Sub-basins (51): based on specific Environment Canada hydrometric gauging station locations; 5. Sub-sub-basins (311): based on specific Environment Canada hydrometric gauging station locations); Incremental drainage areas: 6. Incremental gross drainage areas: one per gauging station. The incremental gross drainage areas are further subdivided into portions that either contribute or do not contribute to drainage to an average runoff event. The portions that do contribute are called ‘effective drainage’ areas, while those that don’t are called ‘non-contributing’. These generate the following levels: 7. Incremental effective drainage areas; and 8. Incremental non-contributing areas. Total drainage areas: 9. Total gross drainage areas; 10. Total effective drainage areas; and 11. Total non-contributing areas; And when combined for the entire project, yields the: 12. Effective drainage area. The series also includes the components: 13. The gauging stations; 14. The collection of boundaries (lines) of the gross incremental drainage areas as well as the boundaries that separate contributing from non-contributing areas for an average runoff event; and 15. A network of downstream-directed lines that connect the gauging stations. All linework is derived from large scale topographic data. One additional non-spatial dataset, a table of tallied values by gauging station, is provided: 16. The Project Gauging Station Table. The Project area, designed for the Prairie Provinces, covers all of Alberta, Saskatchewan and Manitoba, and those portions of British Columbia, Northwest Territories, Nunavut, Ontario, and the United States that are required to complete the trans-border sections of the watersheds. Since 1975 the AAFC Watersheds Project has systematically collected and refined watershed boundaries for the Prairies. The result is the authoritative source for gross and effective drainage areas in the Prairie Provinces. The initial 1:50,000 analog delineations were moved to their digital form in 1994. Since then, the delineations have increased in accuracy and extent, and the series levels have increased to 16 in number.
-
Phytoplankton percent composition by dominant classes across the three Arctic regions, using relative presence across stations calculated from from presence – absence data. State of the Arctic Freshwater Biodiversity Report - Chapter 4 - Page 48 - Figure 4-19
-
Although the circumpolar countries endeavor to support monitoring programs that provide good coverage of Arctic and subarctic regions, this ideal is constrained by the high costs associated with repeated sampling of a large set of lakes and rivers in areas that often are very remote. Consequently, freshwater monitoring has sparse, spatial coverage in large parts of the Arctic, with only Fennoscandia and Iceland having extensive monitoring coverage of lakes and streams Figure 6-1 Current state of monitoring for lake FECs in each Arctic country. State of the Arctic Freshwater Biodiversity Report - Chapter 6 - Page 93 - Figure 6-1
-
Staðsetning á sigkötlum á íslenskum jöklum. Staðsetning byggir á upplýsingum frá Jarðvísindastofnun Háskólan Íslands.
-
Results of circumpolar assessment of lake littoral benthic macroinvertebrates, indicating (a) the location of littoral benthic macroinvertebrate stations, underlain by circumpolar ecoregions; (b) ecoregions with many littoral benthic macroinvertebrate stations, colored on the basis of alpha diversity rarefied to 80 stations; (c) all ecoregions with littoral benthic macroinvertebrate stations, colored on the basis of alpha diversity rarefied to 10 stations; (d) ecoregions with at least two stations in a hydrobasin, colored on the basis of the dominant component of beta diversity (species turnover, nestedness, approximately equal contribution, or no diversity) when averaged across hydrobasins in each ecoregion. State of the Arctic Freshwater Biodiversity Report - Chapter 4 - Page 65 - Figure 4-29
-
Phytoplankton species richness averaged by time periods ±SE in each Arctic region. State of the Arctic Freshwater Biodiversity Report - Chapter 4 - Page 49 - Figure 4-20
-
The “Incremental Effective Drainage Areas of the AAFC Watersheds Project– 2013” dataset is a geospatial data layer containing polygon features representing the portions of each incremental gross drainage area of the Agriculture and Agri-Food Canada (AAFC) Watersheds Project that could be expected to contribute to surface runoff under average runoff conditions. An ‘incremental gross drainage area’ is a hydrometric gauging station's drainage basin, less that of the next upstream gauging station(s)’. ‘Effective drainage’ occurs in areas that are expected to supply surface runoff in an average runoff.
-
The "Hydrometric Gauging Stations of the AAFC Watersheds Project - 2013" dataset is a geospatial data layer containing point features representing the hydrometric gauging stations of the Agriculture and Agri-Food Canada (AAFC) Watersheds Project. The gauging stations are sourced from Environment Canada, the United States and Canadian provinces. Additional virtual stations have been generated to address hydrometric structural issues, like river confluences or lake inlets. Attribute information includes station identification, location and associated catchments/basins.
Arctic SDI catalogue