inlandWaters
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Hydrography (HY) Iceland is one of 12 themes in the European Location Project (ELF). The purpose of ELF is to create harmonised cross-border, cross-theme and cross-resolution pan-European reference data from national contributions. The goal is to provide INSPIRE-compliant data for Europe. A description of the ELF (European Location Project) is here: http://www.elfproject.eu/content/overview Encoding: INSPIRE version 4
-
PURPOSE: Adult salmon logbook data are collected annually from volunteer anglers on the Margaree River. These data are used as an input to the current model for predicting abundance of large and small salmon returns each season in the Margaree River (Breau and Chaput 2012). Logbook data used in the model come from in-season fishing. However, the dataset provided also includes early out-of-season fishing that was conducted by volunteer anglers under a scientific license issued by DFO. This early out-of-season early fishing began in 2015 as a pilot project and ran until 2023. DESCRIPTION: Tabularized data from logbooks of anglers in SFA 18A and 18B PHYSICAL SAMPLE DETAILS: Logbooks USE LIMITATION: To ensure scientific integrity and appropriate use of the data, we would encourage you to contact the data custodian.
-
The water level data comes from the groundwater monitoring network of British Columbia (Canadian province). Each well in the observation network is equipped with a hydrostatic pressure transducer and a temperature sensor connected to a data logger. A second pressure transducer located above the water surface allows for adjusting the water level according to atmospheric pressure variations. The time series refers to the level below which the soil is saturated with water at the site and at the time indicated. The water level is expressed in meters above sea level (MASL). The dataset consists of a general description of the observation site including; the identifier, the name, the location, the elevation and a series of numerical values designating the water levels at a defined date and time of measurement.
-
The water level data comes from the groundwater monitoring network of Nova Scotia (Canadian province). Each well in the observation network is equipped with a hydrostatic pressure transducer and a temperature sensor connected to a data logger. A second pressure transducer located above the water surface allows for adjusting the water level according to atmospheric pressure variations. The time series refers to the level below which the soil is saturated with water at the site and at the time indicated. The water level is expressed in meters above sea level (MASL). The dataset consists of a general description of the observation site including; the identifier, the name, the location, the elevation and a series of numerical values designating the water levels at a defined date and time of measurement.
-
Summary of the taxa accounting for 85% of the lake littoral benthic macroinvertebrates collected in each of several highly-sampled geographic areas, with taxa grouped by order level or higher in pie charts placed spatially to indicate sampling area. Pie charts correspond to (1) Alaska, (2) Greenland low Arctic, (3) Iceland, and (4) Fennoscandia. State of the Arctic Freshwater Biodiversity Report - Chapter 4 - Page 69 - Figure 4-33
-
The water level data comes from the groundwater monitoring network of Quebec (Canadian province). Each well in the observation network is equipped with a hydrostatic pressure transducer and a temperature sensor connected to a data logger. A second pressure transducer located above the water surface allows for adjusting the water level according to atmospheric pressure variations. The time series refers to the level below which the soil is saturated with water at the site and at the time indicated. The water level is expressed in meters above sea level (MASL). The dataset consists of a general description of the observation site including; the identifier, the name, the location, the elevation and a series of numerical values designating the water levels at a defined date and time of measurement.
-
The “Major Basins of the AAFC Watersheds Project - 2013” dataset is a geospatial data layer containing polygon features representing the 23 major basins of the Agriculture and Agri-Food Canada (AAFC) Watersheds Project. The Project is subdivided by ‘incremental gross drainage areas’ associated to individual hydrometric gauging stations. The maximum area that could contribute runoff to each gauging station, less that of its upstream neighbour(s) is called an ‘incremental gross drainage area’. Conceptually, the major basins are collections of the “incremental gross drainage areas” associated with particular major river or lake reach (for example, reaches of the Saskatchewan or Athabasca River). In practice, each major basin consists of the collection of incremental gross drainage areas, whose gauging stations’ numbers have collections of the same three first characters. For example, the Assiniboine River major basin contains the incremental gross drainage areas whose gauging station numbers start with 05J, 05M, or 05N.
-
Figure 4-7 Circumpolar assessment of lake diatoms, indicating (a) the location of lake diatom stations, underlain by circumpolar ecoregions; (b) ecoregions with many lake diatom stations, colored on the basis of alpha diversity rarefied to 40 stations; (c) all ecoregions with lake diatom stations, colored on the basis of alpha diversity rarefied to 10 stations; (d) ecoregions with at least two stations in a hydrobasin, colored on the basis of the dominant component of beta diversity (i.e. species turnover, nestedness, approximately equal contribution, or no diversity) when averaged across hydrobasins in each ecoregio. State of the Arctic Freshwater Biodiversity Report - Chapter 4 - Page 35 - Figure 4-7
-
The "Areas of Non-Contributing Drainage within Total Gross Drainage Areas of the AAFC Watersheds Project - 2013" dataset is a geospatial data layer containing polygon features representing the areas within the “total gross drainage areas” of each gauging station of the Agriculture and Agri-Food Canada (AAFC) Watersheds Project that DO NOT contribute to average runoff. A “total gross drainage area” is the maximum area that could contribute runoff for a single gauging station – the “areas of non-contributing drainage” are those parts of that “total gross drainage area” that DO NOT contribute to average runoff. For each “total gross drainage area” there can be none to several unconnected “areas of non-contributing drainage”. These polygons may overlap with those from other gauging stations’ “total gross drainage area”, as upstream land surfaces form part of multiple downstream gauging stations’ “total gross drainage areas”.
-
Double line streams from FC1 assigned a stream class
Arctic SDI catalogue