From 1 - 4 / 4
  • Categories  

    The pan-European Very High Resolution (VHR) Image Mosaic 2018 is a seamless mosaic of the VHR 2018 dataset, based on watershed segmentation of image overlaps. The input data consists of a mix of Pleiades, SPOT, DOVE, Kompsat-4, Deimos-2, SuperView, and TripleSat images. The input imagery has been colour balanced against the Sentinel-2 based HR mosaic from 2018. Colour balancing is done through iterative histogram matching, where the first iteration is used to identify clouds and snow, and the second iteration re-balances, with the bright objects masked out. Cloud cover has been minimized through an innovative approach to cloud masking, which relies on automatically identifying and de-prioritizing overly bright areas in the resulting mosaic. Some clouds and snow remain, as all pixels have to have a value, meaning that if no cloud or snow free images were available for a given area, the bright pixels will remain. The mosaic primarily is used as input data in the production of various Copernicus Land Monitoring Service (CLMS) datasets and services, such as land cover maps and high resolution layers on land cover characteristic and can be also useful for CLMS users for visualizations and classifications on land. The input imagery for the creation of the mosaic is provided by ESA. Due to license restrictions, VHR Image Mosaic 2018 is only available as a web service (WMS), and not for data download.

  • Categories  

    The pan-European Very High Resolution (VHR) Image Mosaic 2021 is a seamless mosaic of the VHR 2021 dataset. The input data consists of a mix of Pleiades, SuperView, Worldview, Kompsat-3, Kompsat-4, Geoeye, SPOT, Deimos-2, Vision-1 and TripleSat images. To enhance the appearance of the input imagery, a histogram stretch was applied, cutting off the lowest and highest 0.1 percent of the histogram values and stretching the remaining values to fit the 16-bit pixel depth. For each input image, only selected areas were used to create the mosaic, and the rest was masked out to exclude areas with clouds and their shadows. Color balance was achieved using a second-order method, which modifies all input pixels toward a set of multiple points derived from a two-dimensional polynomial parabolic surface, ensuring a seamless mosaic. For several water bodies, especially large lakes, the final result exhibited a patchy surface pattern due to presence of sun glint on the satellite images. A post-processing methodology was implemented to recalculate the digital values to produce a seamless appearance surface of some of these major lakes: Vänern and Vättern (Sweden), Oulu (Finland), Peipus (Estonia), Geneva (Switzerland/France), Constance (Switzerland/Germany/Austria), Garda and Bolsena (Italy), Skadar (Montenegro/Albania), Prespa (North Macedonia/Albania/Greece), Beysehir, Iznik and Van (Turkey). The applied methodology consisted of creating individual mosaics with the images comprising only the mentioned lakes (a mosaic per lake), calculating Normalized Difference Vegetation Index (NDVI) for shoreline extraction, and color balancing each mosaic individually with all land surfaces masked out, using only pixels belonging to the water category. This approach allowed smoothing the patchy surfaces of the above-mentioned lakes considering statistics solely from the water pixels, ensuring a more uniform appearance. To enhance the visualization of the entire dataset at larger scales (greater than 1:500.000), the mosaic displays pan-European overviews generated from the pan-European Very High Resolution 2018 Image Mosaic. The updated VHR 2021 version is visualized only at scales below 1:500.000. The mosaic primarily is used as input data in the production of various Copernicus Land Monitoring Service (CLMS) datasets and services, such as land cover maps and high-resolution layers on land cover characteristic. It can be also useful for CLMS users for visualizations and classifications on land. The input imagery for the creation of the mosaic is provided by ESA. Due to license restrictions, the VHR Image Mosaic 2021 is only available as a web map service (WMS), and not for data download.

  • Categories  

    Elevation model 2 m is a model depicting the elevation of the ground surface in relation to sea level. Its grid size is 2 m x 2 m. The dataset is based on laser scanning data, the point density of which is at least 0.5 points per square metre. The product's coverage is based on nationwide laser scanning. In some parts of the outer archipelago or the eastern border, the elevation model is not available. Elevation model 2 m is produced in two quality classes: the elevation accuracy in class I is on average 0.3 metres and the elevation accuracy in class II varies between 0.3 metres and one metre. The product belongs to the open data of the National Land Survey of Finland.

  • Categories  

    I produkten ingår två kartskikt som beskriver markfuktighet. Dessa rasterkartor är producerade genom sambearbetning av data från Lantmäteriets nationella laserskanning och provytor från Riksskogstaxeringen (SLU). Rastercellerna har en storlek på 2 x 2 meter. Värdena för en rastercell beskriver medel-markfuktigheten under året. Markfuktighetskartan bygger på hydrologiska modelleringar baserat på GSD-Höjddata grid 2+ © Lantmäteriet. Nedan följer en kort beskrivning av de variabler som ingår i produkten. SLU Markfuktighetskarta SLU markfuktighetskarta skapades genom att kombinera information i 24 olika kartor och använda fältdata från 20 000 av riksskogstaxeringens provytor som är fördelade över hela Sverige för att träna modellen (genom så kallad maskininlärning) var det är torrt och var det är blött. Det gör att kartan är anpassad för olika regioner med olika topografi, klimat, och jordarter. SLU markfuktighetskarta visar hur sannolikt det är att en pixel i kartan ska klassificeras som blöt, det kan ses som ett index där 0 är torr och 100 blöt. På SLU Markfuktighetskarta indikerar färgerna olika markfuktighet; torr mark är röd, fuktig mark är gul, frisk-fuktig mark är grön, fuktig mark är turkos och blöt mark är blå. Men färgerna på kartan ”smälter ihop” för att få mjukare övergångar. SLU Markfuktighetskarta klassad Den klassade markfuktighetskartan visar markfuktigheten indelad i tre klasser: 1. torr-frisk, 2. frisk-fuktig och 3. fuktig-blöt. Öppet vatten (sjöar och vattendrag) har klassats som 4. Läs mer om de enskilda rasterkartorna på http://www.slu.se/mfk.