Environmental sciences
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
-
The Fieldnotes dataset represents the anticipated locations of DFO Science field operations in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and the Yukon.
-
Description: This dataset contains layers of predicted occurrence for 65 groundfish species as well as overall species richness (i.e., the total number of species present) in Canadian Pacific waters, and the median standard error per grid cell across all species. They cover all seafloor habitat depths between 10 and 1400 m that have a mean summer salinity above 28 PSU. Two layers are provided for each species: 1) predicted species occurrence (prob_occur) and 2) the probability that a grid cell is an occurrence hotspot for that species (hotspot_prob; defined as being in the lower of: 1) 0.8, or 2) the 80th percentile of the predicted probability of occurrence values across all grid cells that had a probability of occurrence greater than 0.05.). The first measure provides an overall prediction of the distribution of the species while the second metric identifies areas where that species is most likely to be found, accounting for uncertainty within our model. All layers are provided at a 1 km resolution. Methods: These layers were developed using a species distribution model described in Thompson et al. 2023. This model integrates data from three fisheries-independent surveys: the Fisheries and Oceans Canada (DFO) Groundfish Synoptic Bottom Trawl Surveys (Sinclair et al. 2003; Anderson et al. 2019), the DFO Groundfish Hard Bottom Longline Surveys (Lochead and Yamanaka 2006, 2007; Doherty et al. 2019), and the International Pacific Halibut Commission Fisheries Independent Setline Survey (IPHC 2021). Further details on the methods are found in the metadata PDF available with the dataset. Abstract from Thompson et al. 2023: Predictions of the distribution of groundfish species are needed to support ongoing marine spatial planning initiatives in Canadian Pacific waters. Data to inform species distribution models are available from several fisheries-independent surveys. However, no single survey covers the entire region and different gear types are required to survey the range of habitats that are occupied by groundfish. Bottom trawl gear is used to sample soft bottom habitat, predominantly on the continental shelf and slope, whereas longline gear often focuses on nearshore and hardbottom habitats where trawling is not possible. Because data from these two gear types are not directly comparable, previous species distribution models in this region have been limited to using data from one survey at a time, restricting their spatial extent and usefulness at a regional scale. Here we demonstrate a method for integrating presence-absence data across surveys and gear types that allows us to predict the coastwide distributions of 66 groundfish species in British Columbia. Our model leverages the use of available data from multiple surveys to estimate how species respond to environmental gradients while accounting for differences in catchability by the different surveys. Overall, we find that this integrated method has two main benefits: 1) it increases the accuracy of predictions in data-limited surveys and regions while having negligible impacts on the accuracy when data are already sufficient to make predictions, 2) it reduces uncertainty, resulting in tighter confidence intervals on predicted species occurrences. These benefits are particularly relevant in areas of our coast where our understanding of habitat suitability is limited due to a lack of spatially comprehensive long-term groundfish research surveys. Data Sources: Research data was provided by Pacific Science’s Groundfish Data Unit for research surveys from the GFBio database between 2003 and 2020 for all species which had at least 150 observations, across all gear type and survey datasets available. Uncertainties: These are modeled results based on species observations at sea and their related environmental covariate predictions that may not always accurately reflect real-world groundfish distributions though methods that integrate different data types/sources have been demonstrated to improve model inference by increasing the accuracy of the predictions and reducing uncertainty.
-
The Fieldnotes dataset represents the anticipated locations of DFO Science field operations for 2022-2023 in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and the Yukon.
-
Fisheries and Oceans Canada (DFO) conducts research and undertakes monitoring surveys of the marine and freshwater environment in support of sustainable fisheries, healthy aquatic ecosystems and living resources, and safe and effective marine services. In an effort to effectively inform and ensure Canadians feel engaged in the delivery of its science mandate, DFO produces Fieldnotes, an annual compendium of planned science field operations in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and Yukon.
-
The Fieldnotes dataset represents anticipated locations of science field research and monitoring to be conducted throughout the year by Fisheries and Oceans Canadas' Pacific Science team and collaborators in the Northeast Pacific and Arctic oceans, and in the coastal and interior waters of British Columbia and Yukon.
-
The Fieldnotes dataset represents the anticipated locations of DFO Science field operations for 2021-2022 in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and the Yukon.
-
The Fieldnotes dataset represents the anticipated locations of DFO Science field operations for 2020-2021 in the North Pacific and Arctic oceans, as well as in the coastal and interior waters of British Columbia and the Yukon.
-
This entry provides access to the figures and data tables that feature in the CSAS Research Document titled 'Optical, chemical, and biological oceanographic conditions on the Scotian Shelf and in the eastern Gulf of Maine in 2015'. Please consult the meta-data text file that accompanies the zip file download for the figure on the data usage policy and appropriate citation. The meta-data file also provides field descriptors and any other information that may be useful in interpreting the data provided in relation to the accompanying imagery. Abstract: As warm and variable ocean conditions persisted in the Maritimes Region in 2015, there was increasing evidence of a shift in both phytoplankton and zooplankton communities away from the dominance of large phytoplankton and copepods toward smaller phytoplankton and copepod species. Although deep-water nitrate inventories were mainly higher than average in 2015, deep silicate and phosphate inventories were lower than average on the Scotian Shelf for the third year in a row. The spring bloom started later than normal and was weaker in magnitude and shorter in duration than usual. Phytoplankton biomass anomalies were mixed across the Shelf, but the abundance of large phytoplankton, particularly diatoms, was lower than average, continuing a pattern started in 2009. The abundance of the biomass-dominant copepod species Calanus finmarchicus and zooplankton biomass overall were lower than average overall in 2015, as was the abundance of Arctic Calanus species, continuing a pattern started during the last 4-7 years. In contrast, the abundances of offshore copepods were higher than average. Changes in phytoplankton and zooplankton communities observed in recent years indicate poor feeding conditions for planktivorous fish, birds, and mammals. Continuous Plankton Recorder sampling, the reporting of which lags Atlantic Zone Monitoring Program sampling by one year, indicated that in 2014 the spring phytoplankton bloom occurred earlier and was of shorter duration than normal over the entire Scotian Shelf and that the springtime peaks in abundance of the dominant zooplankton taxa Calanus I-IV and C. finmarchicus V-VI were also relatively early and relatively short-lived. 2014 annual abundance anomalies were unusually high for hyperiid amphipods and foraminifera over the entire Scotian Shelf in 2014, and unusually low for euphausiids. Annual abundance anomalies for most other taxa were at near normal levels on the western Scotian Shelf and below normal levels on the eastern Scotian Shelf. http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2017/2017_012-eng.html
-
In 2009, Fisheries and Oceans Canada published the Policy on Managing the Impacts of Fishing on Sensitive Benthic Areas. To support the implementation of this policy, a Canadian Science Advisory Secretariat (CSAS) process was initiated to: assess the distribution of fishing effort in Canada’s Atlantic and Eastern Arctic waters from 2005-2014, evaluate the overlap between fishing effort and Significant Benthic Areas (SiBAs), and identify areas of potential conservation concern. Although Research Document 2018/15 (Koen-Alonso et al. 2018), detailing this work, has not been updated since publication, the methodology outlined within it is still used to generate updated fishing effort layers as new data becomes available. This record illustrates cumulative fishing effort in Canada’s Atlantic and Eastern Arctic waters from 2005-2022, and is based on commercial logbook and vessel monitoring system (VMS) data. Fishing effort has been standardized into percentiles, whereby the top 20th percentile of intensity (cell values ≥20) represent cells containing the most intense fishing activities.
-
This collection is a legacy product that is no longer supported. It may not meet current government standards. This inventory presents chronologically the satellite images acquired, orthorectified and published over time by Natural Resources Canada. It is composed of imagery from the Landsat7 (1999-2003) and RADARSAT-1 (2001-2002) satellites, as well as the CanImage by-product and the control points used to process the images. Landsat7 Orthorectified Imagery: The orthoimage dataset is a complete set of cloud-free (less than 10%) orthoimages covering the Canadian landmass and created with the most accurate control data available at the time of creation. RADARSAT-1 Orthorectified Imagery: The 5 RADARSAT-1 images (processed and distributed by RADARSAT International (RSI) complete the landsat 7 orthoimagery coverage. They are stored as raster data produced from SAR Standard 7 (S7) beam mode with a pixel size of 15 m. They have been produced in accordance with NAD83 (North American Datum of 1983) using the Universal Transverse Mercator (UTM) projection. RADARSAT-1 orthoimagery were produced with the 1:250 000 Canadian Digital Elevation Data (CDED) and photogrammetric control points generated from the Aerial Survey Data Base (ASDB). CanImage -Landsat7 Orthoimages of Canada,1:50 000: CanImage is a raster image containing information from Landsat7 orthoimages that have been resampled and based on the National Topographic System (NTS) at the 1:50 000 scale in the UTM projection. The product is distributed in datasets in GeoTIFF format. The resolution of this product is 15 metres. Landsat7 Imagery Control Points: the control points were used for the geometric correction of Landsat7 satellite imagery. They can also be used to correct vector data and for simultaneously displaying data from several sources prepared at different scales or resolutions.