From 1 - 10 / 147
  • Categories  

    Results from temperature preference experiments demonstrated that individual personality was consistent and repeatability. Individual preferred and maximum avoidance temperatures were significantly reduced in hypoxia compared to normoxia. Standard metabolic rate increased with temperature and body mass. Patterns of projected habitat change suggest the spatial extent of the current distribution of Carmine shiner would shift north with global warming. The understanding of habitat requirements and responses to climate will aid management and recovery efforts for this threatened species. Cite this dataset as: Enders, Eva. Data of: Carmine Shiner Conservation Physiology. Arctic and Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg Manitoba. https://open.canada.ca/data/en/dataset/a6a606a4-8cdc-48e9-812c-7bdcd84840e7

  • Categories  

    This dataset contains the results of work undertaken in 2019, 2020, 2021 and 2022 to scope the extent of the spread of Smallmouth Bass in parts of the Miramichi River Watershed using an eDNA-based species-specific qPCR approach.

  • DFO’s Oceans and Coastal Management Division (OCMD) in the Maritimes Region has updated its fisheries landings maps for 2010–2014. These maps will be used for decision making in coastal and oceans management, including mitigating human use conflicts, informing environmental emergency response operations and protocols, informing Marine Stewardship Council certification processes, planning marine protected area networks, assessing ecological risks, and monitoring compliance and threats in coral and sponge closures and Marine Protected Areas. Fisheries maps were created to identify important fishing areas using aggregate landed weight (kg) per 2 x 2-minute grid cell for selected species/gear types. This dataset has been filtered to comply with the Government of Canada's privacy policy. Privacy assessments were conducted to identify NAFO unit areas containing data with less than five vessel IDs, license IDs and fisher IDs. If this threshold was not met, catch weight locations were withheld from these unit areas to protect the identity or activity of individual vessels or companies. Maps were created for the following species/gear types: 1. Atlantic Halibut 2. Bluefin Tuna 3. Bottom Longline Groundfish 4. Bottom Trawl Groundfish 5. Cod 6. Cod, Haddock, Pollock 7. Cusk 8. Dogfish 9. Flatfish 10. Gillnet Groundfish 11. Greenland Halibut 12. Groundfish 13. Groundfish (quarterly composites Q1, Q2, Q3, Q4) 14. Hagfish 15. Herring 16. Large Pelagics 17. Mackerel 18. Monkfish 19. Offshore Clam 20. Offshore Lobster 21. Grey Zone Lobster 22. Other Crab 23. Other Tuna 24. Pollock 25. Porbeagle, Mako and Blue Shark 26. Red Hake 27. Redfish 28. Scallop 29. Scallop (quarterly composites Q1, Q2, Q3, Q4) 30. Sculpin 31. Sea Urchin 32. Shrimp 33. Silver Hake 34. Skate 35. Snow Crab 36. Squid 37. Swordfish 38. White Hake 39. Wolffish

  • Fisheries landings and effort mapping of the inshore lobster fishery on the DFO Maritimes Region statistical grid (2012-2014). This report describes an analysis of Maritimes Region inshore lobster logbook data reported at a grid level, including Bay of Fundy Grey Zone data reported at the coordinate level. Annual and composite (2012–2014) grid maps were produced for landings, number of license-days fished, number of trap hauls, and the same series standardized by grid area, as well as maps of catch weight per number of trap hauls as an index of catch per unit effort (CPUE). Spatial differences in fishing pressure, landings, and CPUE are indicated, and potential mapping applications are outlined. Mapping the distribution and intensity of inshore lobster fishing activity has management applications for spatial planning and related decision support. The lack of region-wide latitude and longitude coordinates for lobster effort and landings limits the utility of commercial logbook data for marine spatial planning purposes.

  • Ichthyoplankton surveys were conducted in the Strait of Georgia (British Columbia) during 1979-1981 to ascertain the onset of fish spawning, and to explore distributional pattern and estimate total biomass of fish species. Oblique tows were made using 0.25m2 Bongos equipped with 351 micron Nitex nets of modified SCOR design. All sampling gear was black to minimize potential avoidance and resulting catch bias. The tow procedure generally followed that established by CALCOFI. This dataset contains a compilation of corrected catches of juvenile fishes, fish eggs and fish larvae by station.

  • Categories  

    The Coastal Biodiversity Trawl Survey for the Passamaquoddy Bay was conducted annually between July to October from 2009 to 2019. This survey was intended to monitor long-term change in local species presence, habitat utilization, and health. The sampling activities support coastal research in fisheries, aquaculture, marine protected areas, and ecosystem change. Data collected prior to 2013 are generally not recommended for comparative analysis due to changes in vessel, sampling effort, and protocols.

  • Categories  

    Summary The Quebec region of the Department of Fisheries and Oceans (DFO) is responsible for the assessment of several fish and invertebrate stocks exploited in the Estuary and the northern Gulf of St. Lawrence. The commercial catches sampling program is one of the sources of information used to complete these assessments. The data collected by this program, at wharf or at sea, offers among other things the advantage of a relatively large spatio-temporal coverage and provides some of the necessary knowledge to assess the demography and the structure of the exploited populations. This program is implemented by specialized DFO staff whose main mandate is to collect biological data on groundfish, pelagic fish and marine invertebrate species that are commercially exploited in the various marine communities. Data This dataset on the Atlantic herring (Clupea harengus) includes the metadata, sample weight, fish length, the sex and the number of specimens measured. This dataset covers the period of 1982 to present. In order to protect the confidentiality of the sources, some informations (such as those concerning the vessel) have been excluded and others (such as the date of capture) have been simplified. Entries where there was only one vessel in a fishing area for a given year were also excluded. Further information including the fishing areas coordinates can be found by clicking on the «Atlantic and Arctic commercial fisheries» and «Fishing areas» links below.

  • Categories  

    A rotary screw trap (RST; also known as a smolt wheel) is used to perform a capture-mark-recapture experiment on the main stem of the Margaree River. Smolts are captured at the wheel, a subset are tagged (max 200 individuals daily) and released upriver. Individuals not tagged are enumerated and released at the wheel. A fraction of tagged individuals are recaptured at the wheel. Trap efficiency and smolt abundance can be calculated from this data.

  • Categories  

    Atlantic Cod otoliths are collected from scientific surveys and from scientific sampling of commercial fisheries. The otoliths collected are placed in paper envelopes, recorded and held in a climate-controlled storage facility. Age determination is performed yearly on the available samples. Digital images of each pair of otoliths collected are captured when possible. The information made available through this metadata record is the summary of otoliths present in the collection at the Gulf Fisheries Centre in Moncton, NB, Canada. There is additional information of observed sex, length, weight and age information of fish specimens made by trained Fisheries and Oceans Canada technicians that can be made available upon request. PARAMETERS COLLECTED: length (biological), age (biological) NOTES ON QUALITY CONTROL: A reference collection for ageing Cod exists and is used to calibrate the age readings obtained by the fisheries technicians that use the otoliths for age estimation. Digital images of the otoliths that are part of the reference collection are available and used for calibration and training purposes. The otolith images are also authoritatively annotated by fisheries technicians. PHYSICAL SAMPLE DETAILS: Fish otoliths SAMPLING METHODS: Atlantic Cod otoliths are obtained from fish specimens collected during research surveys and during scientific sampling of commercial fisheries. The sagittal otolith is removed from sampled specimens, recorded, placed in a protective medium and held in a climate-controlled storage facility. Digital images of each pair of otoliths collected are captured when possible.

  • Categories  

    Atlantic herring NAFO 4T commercial landings data. Landings (in metric tons) per year, per stock (spring spawners and fall spawners), per fishing season (spring and fall) and per gear (fixed and mobile). Two fish samples are taken per week per herring fishing area to determine stock identification (spring or fall spawners). Daily landings data are obtained from DFO Statistics Branch. Stock (spring or fall spawner) data are gathered from port sampling.