Provide Weather Information Products and Services
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
-
The Air Quality Health Index (AQHI) is a scale designed to help quantify the quality of the air in a certain region on a scale from 1 to 10. When the amount of air pollution is very high, the number is reported as 10+. It also includes a category that describes the health risk associated with the index reading (e.g. Low, Moderate, High, or Very High Health Risk). The AQHI is calculated based on the relative risks of a combination of common air pollutants that are known to harm human health, including ground-level ozone, particulate matter, and nitrogen dioxide. The AQHI formulation captures only the short term or acute health risk (exposure of hour or days at a maximum). The formulation of the AQHI may change over time to reflect new understanding associated with air pollution health effects. The AQHI is calculated from data observed in real time, without being verified (quality control).
-
Climate observations are derived from two sources of data. The first are Daily Climate Stations producing one or two observations per day of temperature, precipitation. The second are hourly stations that typically produce more weather elements e.g. wind or snow on ground.
-
Current conditions and forecasts for selected Canadian cities. Raw XML data are used to generate each city page on the Environment Canada web site https://www.weather.gc.ca/.
-
Regional Deterministic Air Quality Analysis (RDAQA) is an objective analysis of surface pollutants that combines numerical forecasts from the Regional Air Quality Deterministic Prediction System (RAQDPS) with hourly observations from various monitoring networks in North America, including the Canadian measurement networks operated by the provinces, territories and certain cities, as well as the various American networks in the context of the AIRNow program administered by US/EPA (US Environmental Protection Agency). RDAQA analysis provides the best description of current air quality conditions, and is used to inform the public, meteorologists in the various Environment and Climate Change Canada forecasting offices, Health Canada and other users about the distribution of air pollutants near the ground, and the performance of forecasting models. Each hour, a preliminary product is available approximately one hour after the observation measurement time, while final and Firework products are available approximately two hours after the measurement time. The preliminary and final products contain analysis of the chemical constituents O3, SO2, NO, NO2, PM2.5 (fine particles with diameters of 2.5 micrometers or less) and PM10 (coarse particles with diameters of 10 micrometers or less), while the Firework product contains analysis of PM2.5 and PM10.
-
This mosaic is calculated over the North American domain with a horizontal spatial resolution of 1 km. This mosaic therefore includes all the Canadian and American radars available in the network and which can reach a maximum of 180 contributing radars. To better represent precipitation over the different seasons, this mosaic renders in mm/h to represent rain and in cm/h to represent snow. For the two precipitation types (rain and snow), we use two different mathematical relationships to convert the reflectivity by rainfall rates (mm/h rain cm/h for snow). This is a hybrid mosaic from DPQPE (Dual-Pol Quantitative Precipitation Estimation) for S-Band radars. For the US Nexrad radars, ECCC uses the most similar product from the US Meteorological Service (NOAA). This product displays radar reflectivity converted into precipitation rates, using the same formulas as the Canadian radars.
-
Canadian hourly climate data are available for public access from the ECCC/MSC's National Climate Archive. These are surface weather stations that produce hourly meteorological observations, taken each hour of the day. Only a subset of the total stations found on Environment and Climate Change Canada’s Historical Climate Data Page is shown due to size limitations.The priorities for inclusion are as follows: stations in cities with populations of 10000+, stations that are Regional Basic Climatological Network status and stations with 30+ years of data.
-
Daily climate observations are derived from two sources of data. The first are Daily Climate Stations producing one or two observations per day of temperature, precipitation. The second are hourly stations that typically produce more weather elements e.g. wind or snow on ground. Only a subset of the total stations is shown due to size limitations. The criteria for station selection are listed as below. The priorities for inclusion are as follows: (1) Station is currently operational, (2) Stations with long periods of record, (3) Stations that are co-located with the categories above and supplement the period of record.
-
Hotspots represent active wildfires. Natural Resources Canada Canadian Wild Fire Information System identifies them by processing Infrared satellite images. This layer contains the hotspots that are selected to be used as input for the Regional Air Quality Deterministic Prediction System FireWork (RAQDPS-FW) to enable forecasting air quality while taking into account wildfire emissions. Geographical coverage is Canada and the United States. The products are presented as historical annual compilations which highlight long-term trends in cumulative effects on the environment.
-
Environment Canada issues weather alerts about weather related hazards in order to notify those in affected areas so that they can take steps to protect themselves and their property from harm. Alerts are classified depending on the severity and timing of the subject event and include: warnings, watches, advisories and statements. Warnings are usually issued six to 24 hours in advance, although some severe weather (such as thunderstorms and tornadoes) can occur rapidly, with less than a half hours' notice.
-
A database of verified tornado occurrences across Canada has been created covering the 30-year period from 1980 to 2009. The data are stored in a Microsoft Excel spreadsheet, including fields for date, time, location, Fujita Rating (intensity), path information, fatalities, injuries, and damage costs. In cases where no data were available, values in the database have been left blank. The tornado data have undergone a number of quality control checks and represent the most current knowledge of past tornado events over the period. However, updates may be made to the database as new or more accurate information becomes available. The database has also been used to produce PNG images and an interactive KML file that can be viewed using Google Earth.