NetCDF
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected mean temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled minimum mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Multi-model ensembles of surface wind speed based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of surface wind speed (m/s) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better-projected climate change information.
-
Multi-model ensembles of sea ice concentration based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice concentration as represented as the percentage (%) of grid cell area, are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
The Global Deterministic storm Surge Prediction System (GDSPS) produces water level forecasts using a modified version of the NEMO ocean model (Wang et al. 2021, 2022, 2023). It provides 240 hours forecasts twice per day on a 1/12° resolution grid (3-9 km). The model is forced by the 10 meters winds, sea level pressure, ice concentration, ice velocity and surface currents from the Global Deterministic Prediction System (GDPS). The three dimensionnal ocean temperature and salinity fields of the model are nudged to values provided by the Global Ice-Ocean Prediction System (GIOPS) and the GDPS. During the post-processing phase, storm surge elevation (ETAS) is derived from total water level (SSH) by harmonic analysis using t_tide (Foreman et al. 2009).
-
Polar cod (Boreogadus saida), Atlantic cod (Gadus morhua), and Greenland cod (Gadus macrocephalus) are prominent gadid species within the northwest Atlantic Ocean in terms of their ecological and socio-economic importance but it is unclear how climate-induced changes in ocean temperature may alter their distributions by the end of the century (2100). We used physiologically based species distribution models to predict how ocean warming will influence the availability of suitable habitat for early life-stages in these marine gadids. We applied CMIP5 ocean temperature projections to egg survival and juvenile growth models for Polar cod, Atlantic cod, and Greenland cod to create predicted suitability raster surfaces for these metrics across four climatology periods (1981–2005, 2026–2050, 2051–2075, 2076–2100). The analysis focused on the projected changes in temperature in ocean shelf areas where ocean depth is ≤400 m. We created an integrated habitat suitability index by combining the suitability surfaces for egg survival and growth potential to predict areas and periods where thermal conditions were suitable for both life stages. The resulting surfaces indicate that suitable thermal habitat for the juvenile life stages of all three species will shift poleward, but the magnitude of the shift and the overall area of thermally suitable habitat remaining will differ across species and life stages through time. Modelled layers are provided in NetCDF format by metric (egg survival, growth potential, habitat suitability). Data layers for Polar cod, Atlantic cod, and Greenland cod are included within each NetCDF file as variables across time. Note that in this study we refer to Gadus macrocephalus/ogac as Greenland cod since Gadus ogac is thought to be a junior synonym of Gadus macrocephalus (Carr et al., 1999). For more details on the methods and results for this analysis see Cote et al. (2021). References: Carr, S. M., Kivlichan, D. S., Pepin, P., & Crutcher, D. C. (1999). Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Canadian Journal of Zoology, 77(1), 19–26. https://doi.org/10.1139/cjz-77-1-19 Cote, D., Konecny, C. A., Seiden, J., Hauser, T., Kristiansen, T., & Laurel, B. J. (2021). Forecasted Shifts in Thermal Habitat for Cod Species in the Northwest Atlantic and Eastern Canadian Arctic. Frontiers in Marine Science, 8(November), 1–15. https://doi.org/10.3389/fmars.2021.764072
-
Statistically downscaled multi-model ensembles of minimum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled minimum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Statistically downscaled multi-model ensembles of mean temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled mean temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Environment and Climate Change Canada’s (ECCC) CMIP6 statistically downscaled agroclimatic indices are an updated version of the CMIP5 agroclimatic indices dataset making use of two different sets of downscaled scenarios created by the Pacific Climate Impacts Consortium (PCIC): 1. Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6), and 2. Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6). To address the needs of different user groups in Canada, 49 indices, including agroclimatic indices, were proposed by the Canadian adaptation community through a series of consultations. Please see the definition list for the equations of each index. In 2025, PCIC expanded the CMIP6 agroclimatic indices, by adding CanDCS-M6, which includes SSP3-7.0 for most GCMs. Additionally, PCIC introduced 18 new indices to the previous 49. The 67 indices are available for both the CanDCS-U6 and CanDCS-M6. The range of impact-relevant climate indices available for download includes, indices representing counts of the number of days when temperature or precipitation exceeds (or is below) a threshold value; the episode length when a particular weather/climate condition occurs; and indices that accumulate temperature departures above or below a fixed threshold. The statistically downscaled climate indices are available for individual models and ensembles, historical simulations (1951-2014) and three emissions scenarios called “Shared Socioeconomic Pathways” (SSPs), SSP1-2.6, SSP2-4.5, and SSP5-8.5 (2015-2100), at a 10 x 10 km degree grid resolution. The CanDCS-M6 agroclimatic indices dataset also includes SSP3-7.0 results. Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impact assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with a finer spatial scale. Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.
-
The Strait of Belle Isle connects the Labrador Shelf and Gulf of St. Lawrence. Few observations of currents in the Strait of Belle Isle exist despite its important contribution to the heat, salt, and mass budgets of the Gulf of St. Lawrence. This is because the deployment of instruments is complicated by the Strait’s remote location, its strong currents, and the presence of thick winter sea ice and icebergs. The present data set aims to provide a long-term time series of currents in the Strait of Belle Isle. Data were collected using a moored Teledyne RDI Workhorse 300 KHz acoustic Doppler current profiler (ADCP). The ADCP was mounted on a subsurface buoy anchored 5 m from the sea floor, in water approximately 70 m deep near the north shore of the Strait (56° 37.2 W, 51° 34.7 N). This instrument provides three-dimensional current profiles every 30 minutes at a vertical resolution of 4 m. Backscatter intensity is also collected at the same resolution. Raw data were processed using the Magtogoek software (https://github.com/iml-gddaiss/magtogoek), developed by the Department of Fisheries and Oceans Canada. Quality flags have been assigned to the data based on beam sidelobe contamination and required thresholds for extreme velocities, beam correlation and percentage of good four-beam transformations. The ancillary data used to apply this quality control are included in the data set. Reference : Shaw, J.-L., & Galbraith, P. S. (2023). Climatology of transport in the Strait of Belle Isle. Journal of Geophysical Research: Oceans, 128, e2022JC019084. https://doi.org/10.1029/2022JC019084
-
Long-term measurements of sea water properties collected by sensor buoy in Adventfjorden as part of the Svalbard Integrated Arctic Earth Observing System (SIOS).
Arctic SDI catalogue