NetCDF
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
The Operational Hydrodynamic Prediction System (OHPS) is a 2D hydrodynamic prediction system for the St. Lawrence River and fluvial estuary. It helps to better understand flows impacting the St. Lawrence ecosystem and serves as a decision-making tool for the integrated management of the St-Lawrence. Three components are integrated in OHPS system. The first one "steadysol" conducts daily steady-state flow analyses, 4 times per day at 00Z, 06Z, 12Z and 18Z, respectively, over a simulation domain extending from Montreal to Trois-Rivières. The second and third components, i.e. "analysis" and "forecast", provide continuous analyses and 48-hrs forecasts, respectively, for unsteady flows over an extended St. Lawrence domain of which the upstream boundaries locate in Carillon and Beauharnois while the downstream tidal boundary is near Saint-Joseph-de-la-Rive, respectively, 4 times a day at 00Z, 06Z, 12Z and 18Z. The system provides high-resolution outcomes for various parameters such as water levels, depth-averaged velocities and derived attributes, over the simulated domains. The products are available in the NetCDF format, which provides datasets. The published datasets of "steadysol" is over an irregular triangulated mesh, while the datasets of "analysis" and "forecast" are over a Polar Stereographic grid.
-
Description: This dataset consists of three simulations from the Northeastern Pacific Canadian Ocean Ecosystem Model (NEP36-CanOE) which is a configuration of the Nucleus for European Modelling of the Ocean (NEMO) V3.6. The historical simulation is an estimate of the 1986-2005 mean climate. The future simulations project the 2046-2065 mean climate for representative concentration pathways (RCP) 4.5 (moderate mitigation scenario) and 8.5 (no mitigation scenario). Each simulation is forced by a climatology of atmospheric forcing fields calculated over these 20 year periods and the winds are augmented with high frequency variability, which introduces a small amount of interannual variability. Model outputs are averaged over 3 successive years of simulation (the last 3, following an equilibration period); standard deviation among the 3 years is available upon request. For each simulation, the dataset includes the air-sea carbon dioxide flux, monthly 3D fields for potential temperature, salinity, potential density, total alkalinity, dissolved inorganic carbon, nitrate, oxygen, pH, total chlorophyll, aragonite saturation state, total primary production, and monthly maximum and minimum values for oxygen, pH, and potential temperature. The data includes 50 vertical levels at a 1/36 degree spatial resolution and a mask is provided that indicates regions where these data should be used cautiously or not at all. For a more detailed description please refer to Holdsworth et al. 2021. Methods: This study uses a multi-stage downscaling approach to dynamically downscale global climate projections at a 1/36° (1.5 − 2.25 km) resolution. We chose to use the second-generation Canadian Earth System model (CanESM2) because high-resolution downscaled projections of the atmosphere over the region of interest are available from the Canadian Regional Climate Model version 4 (CanRCM4). We used anomalies from CanESM2 with a resolution of about 1° at the open boundaries, and the regional atmospheric model, CanRCM4 (Scinocca et al., 2016) for the surface boundary conditions. CanRCM4 is an atmosphere only model with a 0.22° resolution and was used to downscale climate projections from CanESM2 over North America and its adjacent oceans. The model used is computationally expensive. This is due to the relatively high number of points in the domain (715 × 1,021 × 50) and the relatively complex biogeochemical model (19 tracers). Therefore, rather than carrying out interannual simulations for the historical and future periods, we implemented a new method that uses atmospheric climatologies with augmented winds to force the ocean. We show that augmenting the winds with hourly anomalies allows for a more realistic representation of the surface freshwater distribution than using the climatologies alone. Section 2.1 describes the ocean model that is used to estimate the historical climate and project the ocean state under future climate scenarios. The time periods are somewhat arbitrary; 1986–2005 was chosen because the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations end in 2005 as no community-accepted estimates of emissions were available beyond that date (Taylor et al., 2009); 2046–2065 was chosen to be far enough in the future that changes in 20 year mean fields are unambiguously due to changing GHG forcing (as opposed to model internal variability) (e.g., Christian, 2014), but near enough to be considered relevant for management purposes. While it is true that 30 years rather than 20 is the canonical value for averaging over natural variability, in practice the difference between a 20 and a 30 year mean is small (e.g., if we average successive periods of an unforced control run, the variance among 20 year means will be only slightly larger than for 30 year means). Also, there is concern that longer averaging periods are inappropriate in a non-stationary climate (Livezey et al., 2007; Arguez and Vose, 2011). We chose 20 year periods because they are adequate to give a mean annual cycle with little influence from natural variability, while minimizing aliasing of the secular trend into the means. As the midpoints of the two time periods are separated by 60 years, the contribution of natural variability to the differences between the historical and future simulations is negligible e.g., (Hawkins and Sutton, 2009; Frölicher et al., 2016). Section 2.2 describes how climatologies derived from observations were used for the initialization and open boundary conditions for the historical simulations and pseudo-climatologies were used for the future scenarios. The limited availability of observations means that the years used for these climatologies differs somewhat from the historical and future periods. Section 2.3 details the atmospheric forcing fields and the method that we developed to generate winds with realistic high-frequency variability while preserving the daily climatological means from the CanRCM4 data. Section 2.4 shows the equilibration of key modeled variables to the forcing conditions Data Sources: Model output Uncertainties: The historical climatologies were evaluated using observational climatologies generated from stations with a long time series of data over the time period including CTDs, nutrient profiles, lighthouse and satellite SST, and buoy data. The model is able to represent the historical conditions with an acceptable bias. The resolution of this model is insufficient to represent the narrow straits and channels of this region so the dataset includes a cautionary mask to exclude these regions.
-
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in maximum temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected change in maximum temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected maximum temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of maximum temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled maximum temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
HREPA is part of the NSRPS (National Surface and River Prediction System) experimental system dependent on two other systems. It uses surface station observations and radar QPEs pre-processed by HRDPA and disturbed trial fields generated by the Canadian Land Data Assimilation System (CaLDAS). HREPA produces four precipitation analyses per day on 6-hour accumulations valid at synoptic times (00, 06, 12, and 18 UTC). Each analysis set contains 24 members plus the control member. A quality index (confidence index) is also available on the same grid as the precipitation fields. Finally, two percentiles, 25th and 75th, estimated on these sets are also provided for each synoptic hour. Currently, there is only a high-resolution version of the system, whose domain covers Canada and the northern United States with a horizontal resolution of about 2.5km.
-
Argo is a key component of the Global Ocean Observing System (GOOS) with an array of about 4,000 autonomous instruments reporting on ocean conditions. These floats collect data on ocean temperature and salinity, and in some cases, additional properties that characterize the ocean’s biological and chemical processes. Established in 1999, Argo represents an international collaboration involving contribution from more than 30 nations. Data from Argo floats are made publicly available within 24 hours of collection time, for free. The data provide valuable information on changes to the Earth's climate and hydrological cycle. They are used for a variety of purposes, such as assessing climate change, improving weather forecasts and developing ocean models. Argo Canada, led by Fisheries and Oceans Canada, has been a key contributor to the International Argo Program since its inception in 2001 . The program has been supported by contributions from Department of Environment and Climate Change Canada, Department of National Defense, Dalhousie University, University of Victoria and Ocean Networks Canada.
-
Statistically downscaled multi-model ensembles of minimum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled minimum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in snow depth based on an ensemble of twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Projected change in snow depth is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensemble of snow depth change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in snow depth (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
The Regional Ensemble storm Surge Prediction System (RESPS) produces storm surge forecasts using the DalCoast ocean model. DalCoast (Bernier and Thompson 2015) is a storm surge forecast system for the east coast of Canada based on the depth-integrated, barotropic and linearized form of the Princeton Ocean Model. The model is forced by the 10 meters winds and sea level pressure from the Global Ensemble Prediction System (GEPS).
-
Environment and Climate Change Canada’s (ECCC) CMIP6 statistically downscaled agroclimatic indices are an updated version of the CMIP5 agroclimatic indices dataset making use of two different sets of downscaled scenarios created by the Pacific Climate Impacts Consortium (PCIC): 1. Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6), and 2. Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6). To address the needs of different user groups in Canada, 49 indices, including agroclimatic indices, were proposed by the Canadian adaptation community through a series of consultations. Please see the definition list for the equations of each index. In 2025, PCIC expanded the CMIP6 agroclimatic indices, by adding CanDCS-M6, which includes SSP3-7.0 for most GCMs. Additionally, PCIC introduced 18 new indices to the previous 49. The 67 indices are available for both the CanDCS-U6 and CanDCS-M6. The range of impact-relevant climate indices available for download includes, indices representing counts of the number of days when temperature or precipitation exceeds (or is below) a threshold value; the episode length when a particular weather/climate condition occurs; and indices that accumulate temperature departures above or below a fixed threshold. The statistically downscaled climate indices are available for individual models and ensembles, historical simulations (1951-2014) and three emissions scenarios called “Shared Socioeconomic Pathways” (SSPs), SSP1-2.6, SSP2-4.5, and SSP5-8.5 (2015-2100), at a 10 x 10 km degree grid resolution. The CanDCS-M6 agroclimatic indices dataset also includes SSP3-7.0 results. Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impact assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with a finer spatial scale. Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.
-
Environment and Climate Change Canada’s (ECCC) Climate Research Division (CRD) and the Pacific Climate Impacts Consortium (PCIC) previously produced statistically downscaled climate scenarios based on simulations from climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) in 2015. ECCC and PCIC have now updated the CMIP5-based downscaled scenarios with two new sets of downscaled scenarios based on the next generation of climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6). The scenarios are named Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6) and Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6). CMIP6 climate projections are based on both updated global climate models and new emissions scenarios called “Shared Socioeconomic Pathways” (SSPs). Statistically downscaled datasets have been produced from 26 CMIP6 global climate models (GCMs) under three different emission scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), with PCIC later adding SSP3-7.0 to the CanDCS-M6 dataset. The CanDCS-U6 was downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2) procedure, and the CanDCS-M6 was downscaled using the N-dimensional Multivariate Bias Correction (MBCn) method. The CanDCS-U6 dataset was produced using the same downscaling target data (NRCANmet) as the CMIP5-based downscaled scenarios, while the CanDCS-M6 dataset implements a new target dataset (ANUSPLIN and PNWNAmet blended dataset). Statistically downscaled individual model output and ensembles are available for download. Downscaled climate indices are available across Canada at 10km grid spatial resolution for the 1950-2014 historical period and for the 2015-2100 period following each of the three emission scenarios. A total of 31 climate indices have been calculated using the CanDCS-U6 and CanDCS-M6 datasets. The climate indices include 27 Climdex indices established by the Expert Team on Climate Change Detection and Indices (ETCCDI) and 4 additional indices that are slightly modified from the Climdex indices. These indices are calculated from daily precipitation and temperature values from the downscaled simulations and are available at annual or monthly temporal resolution, depending on the index. Monthly indices are also available in seasonal and annual versions. Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impacts assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with finer spatial scale. Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.
Arctic SDI catalogue