Format

NetCDF

232 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 232
  • Categories  

    Seasonal and annual trends of relative total precipitation change (%) for 1948-2012 based on Canadian gridded data (CANGRD) are available, at a 50km resolution across Canada. The relative trends reflect the percent change in total precipitation over a period from the baseline value (defined as the average over 1961-1990 as the reference period). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Adjusted precipitation data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.

  • Categories  

    This dataset contains the modelled and observed data used in the publication "Fjord circulation permits persistent subsurface water mass in a long, deep mid-latitude inlet" by Laura Bianucci et al., DFO Ocean Sciences Division, Pacific Region (published in the journal Ocean Science in 2024). An application of the Finite Volume Community Ocean Model (FVCOM v4.1) was run from May 24 to June 27, 2019 in the Discovery Islands region of British Columbia, Canada. Observed temperature and salinity profiles available in this area during this time period are included in the dataset, along with the modelled values at the same times and locations.

  • Seasonal and annual trends of mean surface air temperature change (degrees Celsius) for 1948-2016 based on Canadian gridded data (CANGRD) are available at a 50km resolution across Canada. Temperature trends represent the departure from a mean reference period (1961-1990). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Homogenized climate data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.

  • Categories  

    Argo is a global in situ ocean climate monitoring system consisting in an array of over 4,000 free-drifting floats that collect data on ocean temperature and salinity, and sometimes oxygen, in the upper 2000 m of the ocean. It is an international effort, with more than 30 nations contributing floats to the array since 1999. Data from Argo floats are made publicly available within 24 hours of collection time, for free. The data provide valuable information on changes to the Earth's climate and hydrological cycle. They are used for a variety of purposes, such as assessing climate change, improving weather forecasts and developing ocean models. Argo Canada, led by Fisheries and Oceans Canada, has launched over 450 Argo floats since 2001. As of November 2017, 81 Argo Canada floats were active.

  • Categories  

    WCPS-coupled forecast is the component in the Water Cycle Prediction System (WCPS) that provides the coupled atmosphere-ocean-sea ice forecasts at a 1km resolution (0.008 x 0.008 degree) over the Great Lakes, St. Lawrence River and the Gulf of St. Lawrence. It launches 4 times a day at 00, 06, 12, and 18 UTC and produces 84 hours forecast, based on the atmospheric model GEM, coupled with the ocean-ice model NEMO-CICE. The products from WCPS-coupled forecasts are (1) GEM : surface air temperatures, surface wind velocities, and surface runoff (2) NEMO-CICE : variety of lake/ocean sea ice variables, for example, lake levels and temperatures. They are designed to help forecasters issuing bulletins and warnings in ice-infestested waters for navigation, water level alert, emergency response, Search and Rescue, and CIS Sea Ice forecast.

  • Categories  

    Multi-model ensembles for a suite of ocean variables based on projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate models (GCMs) are available for 1900-2100 on a common 1x1 degree global grid. All ocean variables currently available contain data for the top level (sea surface) of the ocean. Climate projections vary across GCMs due to differences in the representation and approximation of earth systems and processes, and natural variability and uncertainty regarding future climate drivers. Thus, there is no single best climate model. Rather, using results from an ensemble of models (e.g., taking the average) is best practice, as an ensemble takes model uncertainty into account and provides more reliable climate projections. Provided on CCDS are multi-model ensembles as well as individual model simulations. Multi-model output is available for historical simulations and six Shared Socioeconomic Pathways (SSPs) (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0, and SSP5-8.5), four future periods (near-term (2021-2040), mid-term (2041-2060 and 2061-2080), end of century (2081-2100), and up to eight percentiles (maximum, minimum, mean, 5th, 25th, 50th (median), 75th, and 95th) of the CMIP6 ensemble distribution. Datasets are available as both actual and anomaly values. Anomalies of projected changes are expressed with respect to a historical reference period of 1995-2014. The number of models in each ensemble differs according to model availability for each SSP and variable, see the model list resource for details on the models included in each ensemble. For more information on the CMIP6 multi-model ocean datasets, see the technical documentation resource.

  • Categories  

    Environment and Climate Change Canada’s (ECCC) Climate Research Division (CRD) and the Pacific Climate Impacts Consortium (PCIC) previously produced statistically downscaled climate scenarios based on simulations from climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) in 2015. ECCC and PCIC have now updated the CMIP5-based downscaled scenarios with two new sets of downscaled scenarios based on the next generation of climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6). The scenarios are named Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6) and Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6). CMIP6 climate projections are based on both updated global climate models and new emissions scenarios called “Shared Socioeconomic Pathways” (SSPs). Statistically downscaled datasets have been produced from 26 CMIP6 global climate models (GCMs) under three different emission scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CanDCS-U6 was downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2) procedure, and the CanDCS-M6 was downscaled using the N-dimensional Multivariate Bias Correction (MBCn) method. The CanDCS-U6 dataset was produced using the same downscaling target data (NRCANmet) as the CMIP5-based downscaled scenarios, while the CanDCS-M6 dataset implements a new target dataset (ANUSPLIN and PNWNAmet blended dataset). Statistically downscaled individual model output are available for download. Downscaled climate indices are available across Canada at 10km grid spatial resolution for the 1950-2014 historical period and for the 2015-2100 period following each of the three emission scenarios. Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impacts assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with finer spatial scale. Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.

  • Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in maximum temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected change in maximum temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected maximum temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of maximum temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled maximum temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Multi-model ensembles of mean precipitation based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean precipitation (mm/day) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Multi-model ensembles of sea ice thickness based on projections from twenty-six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice thickness (m) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.