Format

NetCDF

298 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 298
  • Categories  

    Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected mean temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled minimum mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Multi-model ensembles of surface wind speed based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of surface wind speed (m/s) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better-projected climate change information.

  • Categories  

    Multi-model ensembles of sea ice concentration based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice concentration as represented as the percentage (%) of grid cell area, are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    PURPOSE: Freshwater discharge is used to force eastern Canadian ocean models DESCRIPTION: Neural network post-processed WRF-Hydro streamflow timeseries at 477 oceanic river outlets, where lat/lon are proxy position, riverlat/lon are outlet position, and oceanlat/lon are ocean pour points that are displaced slightly into the ocean (next to outlet position on the WRF-Hydro grid). The 477 eastern Canadian rivers were modelled using WRF-Hydro, which was forced by four CMIP models subject to WRF downscaling of atmospheric forcing. The four models are an NCAR Community Climate System Model (CCSM-4 SSP5 8.5) simulation (Meehl et al., 2012), two Met Office Hadley Centre Global Environmental Model (HadGEM2 SSP2 4.5 and SSP5 8.5) simulations (Collins et al., 2011), and a Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2-LR SSP5 8.5) simulation (Mauritsen et al., 2019). Variables and their descriptions are included in the NetCDF file. USE LIMITATION: To ensure scientific integrity and appropriate use of the data, we would encourage you to contact the data custodian.

  • Categories  

    The Global Deterministic storm Surge Prediction System (GDSPS) produces water level forecasts using a modified version of the NEMO ocean model (Wang et al. 2021, 2022, 2023). It provides 240 hours forecasts twice per day on a 1/12° resolution grid (3-9 km). The model is forced by the 10 meters winds, sea level pressure, ice concentration, ice velocity and surface currents from the Global Deterministic Prediction System (GDPS). The three dimensionnal ocean temperature and salinity fields of the model are nudged to values provided by the Global Ice-Ocean Prediction System (GIOPS) and the GDPS. During the post-processing phase, storm surge elevation (ETAS) is derived from total water level (SSH) by harmonic analysis using t_tide (Foreman et al. 2009).

  • Categories  

    Polar cod (Boreogadus saida), Atlantic cod (Gadus morhua), and Greenland cod (Gadus macrocephalus) are prominent gadid species within the northwest Atlantic Ocean in terms of their ecological and socio-economic importance but it is unclear how climate-induced changes in ocean temperature may alter their distributions by the end of the century (2100). We used physiologically based species distribution models to predict how ocean warming will influence the availability of suitable habitat for early life-stages in these marine gadids. We applied CMIP5 ocean temperature projections to egg survival and juvenile growth models for Polar cod, Atlantic cod, and Greenland cod to create predicted suitability raster surfaces for these metrics across four climatology periods (1981–2005, 2026–2050, 2051–2075, 2076–2100). The analysis focused on the projected changes in temperature in ocean shelf areas where ocean depth is ≤400 m. We created an integrated habitat suitability index by combining the suitability surfaces for egg survival and growth potential to predict areas and periods where thermal conditions were suitable for both life stages. The resulting surfaces indicate that suitable thermal habitat for the juvenile life stages of all three species will shift poleward, but the magnitude of the shift and the overall area of thermally suitable habitat remaining will differ across species and life stages through time. Modelled layers are provided in NetCDF format by metric (egg survival, growth potential, habitat suitability). Data layers for Polar cod, Atlantic cod, and Greenland cod are included within each NetCDF file as variables across time. Note that in this study we refer to Gadus macrocephalus/ogac as Greenland cod since Gadus ogac is thought to be a junior synonym of Gadus macrocephalus (Carr et al., 1999). For more details on the methods and results for this analysis see Cote et al. (2021). References: Carr, S. M., Kivlichan, D. S., Pepin, P., & Crutcher, D. C. (1999). Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species. Canadian Journal of Zoology, 77(1), 19–26. https://doi.org/10.1139/cjz-77-1-19 Cote, D., Konecny, C. A., Seiden, J., Hauser, T., Kristiansen, T., & Laurel, B. J. (2021). Forecasted Shifts in Thermal Habitat for Cod Species in the Northwest Atlantic and Eastern Canadian Arctic. Frontiers in Marine Science, 8(November), 1–15. https://doi.org/10.3389/fmars.2021.764072

  • Categories  

    Statistically downscaled multi-model ensembles of total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled total precipitation (mm/day) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Statistically downscaled multi-model ensembles of minimum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled minimum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Statistically downscaled multi-model ensembles of mean temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled mean temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Statistically downscaled multi-model ensembles of maximum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled maximum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.