NetCDF
Type of resources
Available actions
Categories
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
-
Statistically downscaled multi-model ensembles of minimum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled minimum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Statistically downscaled multi-model ensembles of total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled total precipitation (mm/day) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected relative change in total precipitation is with respect to the reference period of 1986-2005 and expressed as a percentage (%). Seasonal and annual averages of projected precipitation change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of projected precipitation change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled total precipitation (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Statistically downscaled multi-model ensembles of mean temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled mean temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Seasonal and annual trends of mean surface air temperature change (degrees Celsius) for 1948-2016 based on Canadian gridded data (CANGRD) are available at a 50km resolution across Canada. Temperature trends represent the departure from a mean reference period (1961-1990). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Homogenized climate data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.
-
Gridded monthly, seasonal and annual mean temperature anomalies derived from daily minimum, maximum and mean surface air temperatures (degrees Celsius) is available at a 50km resolution across Canada. The Canadian gridded data (CANGRD) are interpolated from homogenized temperature (i.e., AHCCD datasets). Homogenized temperatures incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation. The anomalies are the difference between the temperature for a given year or season and a baseline value (defined as the average over 1961-1990 as the reference period). The yearly and seasonal temperature anomalies were computed for the years 1948 to 2017. The data will continue to be updated every year.
-
This dataset contains the modelled and observed data used in the publication "Fjord circulation permits persistent subsurface water mass in a long, deep mid-latitude inlet" by Laura Bianucci et al., DFO Ocean Sciences Division, Pacific Region (published in the journal Ocean Science in 2024). An application of the Finite Volume Community Ocean Model (FVCOM v4.1) was run from May 24 to June 27, 2019 in the Discovery Islands region of British Columbia, Canada. Observed temperature and salinity profiles available in this area during this time period are included in the dataset, along with the modelled values at the same times and locations.
-
CANGRD is a set of Canadian gridded annual, seasonal, and monthly temperature and precipitation anomalies, which were interpolated from stations in the Adjusted and Homogenized Canadian Climate Data (AHCCD); it is used to produce the Climate Trends and Variations Bulletin (CTVB).
-
HREPA is part of the NSRPS (National Surface and River Prediction System) experimental system dependent on two other systems. It uses surface station observations and radar QPEs pre-processed by HRDPA and disturbed trial fields generated by the Canadian Land Data Assimilation System (CaLDAS). HREPA produces four precipitation analyses per day on 6-hour accumulations valid at synoptic times (00, 06, 12, and 18 UTC). Each analysis set contains 24 members plus the control member. A quality index (confidence index) is also available on the same grid as the precipitation fields. Finally, two percentiles, 25th and 75th, estimated on these sets are also provided for each synoptic hour. Currently, there is only a high-resolution version of the system, whose domain covers Canada and the northern United States with a horizontal resolution of about 2.5km.
-
Gridded monthly, seasonal and annual anomalies derived from daily total precipitation is available at a 50km resolution across Canada. The Canadian gridded data (CANGRD) are interpolated from adjusted precipitation (i.e., AHCCD datasets). Adjusted precipitation data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation. The anomalies are the percentage difference between the value for a given year or season and a baseline value (defined as the average over 1961-1990 as the reference period). The yearly and seasonal relative precipitation anomalies were computed for the years 1948 to 2014. The data will be updated as time permits.