NetCDF
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
-
Argo is a key component of the Global Ocean Observing System (GOOS) with an array of about 4,000 autonomous instruments reporting on ocean conditions. These floats collect data on ocean temperature and salinity, and in some cases, additional properties that characterize the ocean’s biological and chemical processes. Established in 1999, Argo represents an international collaboration involving contribution from more than 30 nations. Data from Argo floats are made publicly available within 24 hours of collection time, for free. The data provide valuable information on changes to the Earth's climate and hydrological cycle. They are used for a variety of purposes, such as assessing climate change, improving weather forecasts and developing ocean models. Argo Canada, led by Fisheries and Oceans Canada, has been a key contributor to the International Argo Program since its inception in 2001 . The program has been supported by contributions from Department of Environment and Climate Change Canada, Department of National Defense, Dalhousie University, University of Victoria and Ocean Networks Canada.
-
Statistically downscaled multi-model ensembles of maximum temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled maximum temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
This dataset contains the outputs for Bute Inlet from two simulations shown in the publication "Fjord circulation permits persistent subsurface water mass in a long, deep mid-latitude inlet" by Laura Bianucci et al., DFO Ocean Sciences Division, Pacific Region (published in the journal Ocean Science in 2024). The Finite Volume Community Ocean Model (FVCOM v4.1) was run with two different sets of initial conditions for the Discovery Islands region of British Columbia, Canada, from May 24 to June 27, 2019. The "Baseline" simulation used observed initial conditions, while the "Sensitivity" simulation removed the observed cold subsurface water mass from the initial profiles. Here in this dataset, we provide 29-day averages of the following variables in a transect along Bute Inlet: potential temperature, density, along-inlet velocity, and Brunt-Väisälä frequency (N^2). The averaging properly removes the tidal effects.
-
Multi-model ensembles of mean temperature based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean temperature (°C) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Seasonal and annual multi-model ensembles of projected relative change (also known as anomalies) in mean precipitation based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Projected relative change in mean precipitation is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of mean precipitation change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in mean precipitation (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
CANGRD is a set of Canadian gridded annual, seasonal, and monthly temperature and precipitation anomalies, which were interpolated from stations in the Adjusted and Homogenized Canadian Climate Data (AHCCD); it is used to produce the Climate Trends and Variations Bulletin (CTVB).
-
Seasonal and annual trends of relative total precipitation change (%) for 1948-2012 based on Canadian gridded data (CANGRD) are available, at a 50km resolution across Canada. The relative trends reflect the percent change in total precipitation over a period from the baseline value (defined as the average over 1961-1990 as the reference period). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Adjusted precipitation data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.
-
Statistically downscaled multi-model ensembles of total precipitation are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily precipitation (mm/day) from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded precipitation dataset of Canada (ANUSPLIN) was used as the downscaling target. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled total precipitation (mm/day) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in sea ice thickness, based on an ensemble of twenty-six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Projected change in sea ice thickness is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensemble of sea ice thickness change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in sea ice thickness (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
-
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in maximum temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected change in maximum temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected maximum temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of maximum temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled maximum temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Arctic SDI catalogue