From 1 - 10 / 11
  • Categories  

    View service showing administrative units for states in the Arctic SDI.

  • Categories  

    The Global Deterministic Wave Prediction System (GDWPS) produces wave forecasts out to 120 hours in the future using the third generation spectral wave forecast model WaveWatch III® (WW3). The model is forced by the 10 meters winds and the ice concentration from the Global Deterministic Prediction System (GDPS). The ice concentration is used by the model to attenuate wave growth in areas covered by 25% to 75% ice and to suppress it for concentration above 75%. Forecast elements include significant wave height, peak period and primary swell height, direction and period.

  • Categories  

    The Global Ice-Ocean Prediction System (GIOPS) produces global sea ice and ocean analyses and 10 day forecasts daily. This product contains time-mean sea ice and ocean forecast fields interpolated to two grids. One of the grids is a 0.2° resolution regular latitude-longitude grid covering the global ocean (north of 80° S). The other grid is in north-polar stereographic projection with a 5-km spacing at the standard parallel 60° N and covers the Arctic Ocean and the neighbouring sub-polar seas. Data is available for 50 depths. The data files are in netCDF format and comply with the Climate and Forecast Conventions.

  • Categories  

    The Global Deterministic storm Surge Prediction System (GDSPS) produces water level forecasts using a modified version of the NEMO ocean model (Wang et al. 2021, 2022, 2023). It provides 240 hours forecasts twice per day on a 1/12° resolution grid (3-9 km). The model is forced by the 10 meters winds, sea level pressure, ice concentration, ice velocity and surface currents from the Global Deterministic Prediction System (GDPS). The three dimensionnal ocean temperature and salinity fields of the model are nudged to values provided by the Global Ice-Ocean Prediction System (GIOPS) and the GDPS. During the post-processing phase, storm surge elevation (ETAS) is derived from total water level (SSH) by harmonic analysis using t_tide (Foreman et al. 2009).

  • Categories  

    This map is in <a href="http://links.esri.com/agol_lifecycle " target="_new" >Extended Support</a> and is no longer updated. Esri recommends that you use <a href="http://goto.arcgisonline.com/maps/World_Street_Map " target="_new" >World_Street_Map</a> instead (ArcGIS 9.3 or higher is required).

  • Categories  

    This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us <a href="http://goto.arcgisonline.com/maps/World_Topo_Map " target="_new" >online</a>.

  • Categories  

    The Global Deterministic Prediction System (GDPS) is a coupled atmosphere (GEM), ocean and sea ice (NEMO-CICE) deterministic numerical weather prediction model. Forecasts are carried out twice a day for 10 days lead time. The geographical coverage is global on a native Yin-Yang grid at 15 km horizontal resolution. Data is available for 33 vertical levels and interpolated on a global latitude-longitude uniform grid with 0.2 degree horizontal resolution. Variables availability in number and time frequency is a function of forecast lead time.

  • Categories  

    The Global Ensemble Prediction System (GEPS) carries out physics calculations to arrive at probabilistic predictions of atmospheric elements from the current day out to 16 days into the future (up to 32 days once a week on Thursdays at 00UTC). The GEPS produces different outlooks (scenarios) to estimate the forecast uncertainties due to the nonlinear (chaotic) behaviour of the atmosphere. The probabilistic predictions are based on an ensemble of 20 scenarios that differ in their initial conditions, their physics parameters which are randomly perturbed by a Stochastic Parameter Perturbation (SPP) method, and the stochastic perturbations (kinetic energy). A control member that is not perturbed is also available. Weather elements include temperature, precipitation, cloud cover, wind speed and direction, humidity and others. This product contains raw numerical results of these calculations. Geographical coverage is global. The horizontal resolution of the system is 0.35 degree (about 39 km at equator). The system has 84 vertical levels for the forecasts and for the analyses. Predictions are performed twice a day.

  • Categories  

    The Global Ensemble Wave Prediction System (GEWPS) uses the third generation spectral wave model WaveWatch III® (WW3) to arrive at probabilistic predictions of wave elements from the current day out to 16 days into the future. The probabilistic predictions are based on 20 ensemble members and a control member that are forced by the 10 meters winds from the Global Ensemble Prediction System (GEPS). The GEPS forecast is a coupled atmosphere-ice-ocean model, its sea ice forecast is used by the GEWPS to dampen or suppress wave growth in areas covered respectively with 25% to 75% and more than 75% ice. WW3 (WAVEWATCH III® Development Group, WW3DG 2019) is a third generation spectral wave prediction model that solves the evolution of the energy balance equation for the 2-D wave energy spectrum without any prior assumptions on the shape of the spectrum. The WW3 model has been implemented by a growing number of national operational forecasting centres over the last several years.

  • Categories  

    This worldwide street map presents highway-level data for the world. Street-level data includes the United States; much of Canada; Mexico; Europe; Japan; Australia and New Zealand; India; South America and Central America; Africa; and most of the Middle East. This comprehensive street map includes highways, major roads, minor roads, one-way arrow indicators, railways, water features, administrative boundaries, cities, parks, and landmarks, overlaid on shaded relief imagery for added context. The map also includes building footprints for selected areas. Coverage is provided down to ~1:4k with ~1:1k and ~1:2k data available in select urban areas. The street map was developed by Esri using Esri basemap data, Garmin basemap layers, U.S. Geological Survey (USGS) elevation data, Intact Forest Landscape (IFL) data for the world; HERE data for Europe, Australia and New Zealand, North America, South America and Central America, Africa, India, and most of the Middle East; OpenStreetMap contributors for select countries in Africa and Pacific Islands; NGCC data for China; and select data from the GIS user community. For more information on this map, including the terms of use, visit us <a href="http://goto.arcgisonline.com/maps/World_Street_Map " target="_new" >online</a>.