Contact for the resource

Government of Canada

87 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Formats
Representation types
Update frequencies
status
From 1 - 10 / 87
  • Categories  

    Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected mean temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled minimum mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in surface wind speed based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Projected change in wind speed is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensemble of wind speed change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in wind speed (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Air emissions from oil sands development can come from a number of sources including industrial smokestacks, tailings ponds, transportation, and dust from mining operations. Air quality monitoring under the Joint Canada-Alberta Implementation Plan for the Oil Sands is designed to determine the contribution of emissions from oil sands activities to local and regional air quality and atmospheric deposition both now and in the future. Ambient air quality data include: - Filter Pack (24-hour integrated concentrations of particle-bound SO2-4, NO-3, Cl-, NH+4, Ca2+, Mg2+, Na+, K+ and gaseous SO2 and HNO3 collected daily by the Canadian Air and Precipitation Monitoring Network) - Total Gaseous Mercury (hourly mixing ratios measured by the Canadian Air and Precipitation Monitoring Network and Prairie and Northern Region) - Atmospheric speciated mercury (Hg) (2-hour average concentrations of gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and Hg on PM2.5 (total particulate Hg - TPM) - Comprehensive set of measurements collected from an aircraft (various time resolutions) covering an area of 140,000 km2 over the oil sands region - Comprehensive set of measurements collected from the Fort McKay Oski-ôtin monitoring site - Ozone (hourly mixing ratios measured by the Canadian Air and Precipitation Monitoring Network) - Ozone Vertical Profiles (ozone mixing ratios as a function of height) measured by the Canadian Ozone Sonde Network - Aerosol Optical Depth (measure of the degree to which the presence of aerosols in the atmosphere prevents the transmission of light, from the ground to the top of the atmosphere) measured as part of the AErosol RObotic CANadian (AEROCAN) network - Satellite overpass data have a relatively high spatial resolution over the Oil Sands region to produce images and geo-referenced data of nitrogen dioxide (NO2) and sulphur dioxide (SO2) “vertical column density” (which correlates with surface concentration)

  • Categories  

    Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in minimum temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected change in minimum temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected minimum temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of minimum temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled mean minimum temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Air emissions from oil sands development can come from a number of sources including industrial smokestacks, tailings ponds, transportation, and dust from mining operations. Air quality monitoring under the Joint Canada-Alberta Implementation Plan for the Oil Sands is designed to determine the contribution of emissions from oil sands activities to local and regional air quality and atmospheric deposition both now and in the future. Deposition data include: - Passive Sampling of PACs deployed for two month periods across a network of 17 sites - Active sampling of PACs at three sites to inform the amount of dry deposition - Particulate metals (24 hour integrated samples following the one in six day National Air Pollution Surveillance (NAPS) cycle)

  • Categories  

    The Canadian Protected and Conserved Areas Database (CPCAD) is the authoritative source of data on protected and conserved areas in Canada. The database consists of the most up-to-date spatial and attribute data on marine and terrestrial protected areas in all governance categories recognized by the International Union for Conservation of Nature (IUCN), as well as Other effective area-based conservation measures (OECMs, or conserved areas) across the country. Indigenous Protected and Conserved Areas (IPCAs) are also included if they are recognized as protected or conserved areas. CPCAD adheres to national reporting standards and is freely available to the public. CPCAD is compiled and managed by Environment and Climate Change Canada (ECCC), in collaboration with federal, provincial, territorial, and other reporting authorities that provide the data. The database contains combined data from all these Canadian reporting authorities, who have determined that their areas meet the Canadian criteria as protected or conserved areas. CPCAD is used by a wide range of organizations, including governments, environmental non-governmental organizations (ENGOs), academia, land managers, industry, and the general public. CPCAD supports many of the Government of Canada’s priorities including Canada’s national reporting on protected areas, Canada’s international reporting on protected areas as a result of Canada’s commitments under the United Nations Convention on Biological Diversity, and Canada’s protected areas program by providing baseline information. More detailed information on CPCAD is available by downloading the User Manual. The data is current as of the date of the most recent revision. For prior years, please reach out to scf-geocarto-cws-geomapping@ec.gc.ca.

  • Categories  

    Multi-model ensembles of sea ice thickness based on projections from twenty-six Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of sea ice thickness (m) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Multi-model ensembles of snow depth based on projections from twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of snow depth (m) are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    Statistically downscaled multi-model ensembles of mean temperature are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. The 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of downscaled mean temperature (°C) are available for the historical time period, 1951-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.

  • Categories  

    This dataset provides marine bacteriological water quality data for bivalve shellfish harvest areas in Quebec, Canada. Shellfish harvest area water temperature and salinity data are also provided as adjuncts to the interpretation of fecal coliform density data. The latter is the indicator of fecal matter contamination monitored annually by Environment and Climate Change Canada (ECCC) within the framework of the Canadian Shellfish Sanitation Program (CSSP). The geospatial positions of the sampling sites are also provided. These data are collected by ECCC for the purpose of making recommendations on the classification of shellfish harvest area waters. ECCC recommendations are reviewed and adopted by Regional Interdepartmental Shellfish Committees prior to regulatory implementation by Fisheries and Oceans Canada (DFO). This dataset is 'Deprecated'. Please use updated source here. https://open.canada.ca/data/en/dataset/6417332a-7f37-49bd-8be9-ce0402deed2a