Keyword

Climate

209 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
From 1 - 10 / 209
  • Categories  

    This series of datasets has been created by AAFC’s National Agroclimate Information Service (NAIS) of the Agro-Climate, Geomatics and Earth Observations (ACGEO) Division of the Science and Technology Branch. The Canadian Drought Monitor (CDM) is a composite product developed from a wide assortment of information such as the Normalized Difference Vegetation Index (NDVI), streamflow values, Palmer Drought Index, and drought indicators used by the agriculture, forest and water management sectors. Drought prone regions are analyzed based on precipitation, temperature, drought model index maps, and climate data and are interpreted by federal, provincial and academic scientists. Once a consensus is reached, a monthly map showing drought designations for Canada is digitized. AAFC’s National Agroclimate Information Service (NAIS) updates this dataset on a monthly basis, usually by the 10th of every month to correspond to the end of the previous month, and subsequent Canadian input into the larger North American Drought Monitor (NA-DM). The drought areas are classified as follows: D0 (Abnormally Dry) – represents an event that occurs once every 3-5 years; D1 (Moderate Drought) – represents an event that occurs every 5-10 years; D2 (Severe Drought) – represents an event that occurs every 10-20 years; D3 (Extreme Drought) – represents an event that occurs every 20-25 years; and D4 (Exceptional Drought) – represents an event that occurs every 50 years. Impact lines highlight areas that have been physically impacted by drought. Impact labels specify the longitude and magnitude of impacts. The impact labels are classified as follows: S – Short-Term, typically less than 6 months (e.g. agriculture, grasslands). L – Long-Term, typically more than 6 months (e.g. hydrology, ecology).

  • Categories  

    The Drought Impact Lines dataset highlights areas that have been physically impacted by drought. All drought impact lines have a drought impact label inside of them to express the longevity of the impact. The impact lines are classified using impact labels as follows: S – Short-Term, typically less than 6 months. L – Long-Term, typically more than 6 months. SL – A combination of Short and Long-Term impacts.

  • Categories  

    The Drought Impact Label dataset is used on all drought polygons from D1 to D4 to specify the longitude and magnitude of impacts. Impact labels are often used in association with the Drought Impact Line dataset. The impact labels are classified as follows: S – Short-Term, typically less than 6 months. L – Long-Term, typically more than 6 months. SL – A combination of Short and Long-Term impacts.

  • Categories  

    The "Canada's First Fall Frost Normals (1981-2010)" dataset contains the Mean and Median First Fall Frost Julian day calculated from the ANUSPLIN gridded data set using the date range from January 1, 1981 - December 31, 2010. The dataset also includes the Mean and Median Frost Free Period (given as a count of calendar days). For the purposes of this dataset a Frost Free day is defined as a day where the minimum daily temperature is greater than 0.0 Celsius.For more information, visit: http://open.canada.ca/data/en/dataset/c293739c-4e16-4384-bff8-e3fdaddc5e5f

  • Categories  

    The "Canada's First Fall Frost Normals (1981-2010)" dataset contains the Mean and Median First Fall Frost Julian day calculated from the ANUSPLIN gridded data set using the date range from January 1, 1981 - December 31, 2010. The dataset also includes the Mean and Median Frost Free Period (given as a count of calendar days). For the purposes of this dataset a Frost Free day is defined as a day where the minimum daily temperature is greater than 0.0 Celsius.For more information, visit: http://open.canada.ca/data/en/dataset/c293739c-4e16-4384-bff8-e3fdaddc5e5f

  • Categories  

    Drought is a deficiency in precipitation over an extended period, usually a season or more, resulting in a water shortage that has adverse impacts on vegetation, animals and/or people. The Climate Moisture Index (CMI) was calculated as the difference between annual precipitation and potential evapotranspiration (PET) – the potential loss of water vapour from a landscape covered by vegetation. Positive CMI values indicate wet or moist conditions and show that precipitation is sufficient to sustain a closed-canopy forest. Negative CMI values indicate dry conditions that, at best, can support discontinuous parkland-type forests. The CMI is well suited to evaluating moisture conditions in dry regions such as the Prairie Provinces and has been used for other ecological studies. Mean annual potential evapotranspiration (PET) was estimated for 30-year periods using the modified Penman-Monteith formulation of Hogg (1997), based on monthly 10-km gridded temperature data. Data shown on maps are 30-year averages. Historical values of CMI (1981-2010) were created by averaging annual CMI calculated from interpolated monthly temperature and precipitation data produced from climate station records. Future values of CMI were projected from downscaled monthly values of temperature and precipitation simulated using the Canadian Earth System Model version 2 (CanESM2) for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century. Multiple layers are provided. First, the mean annual Climate Moisture Index is shown across Canada for a reference period (1981-2010). Projected mean annual Climate Moisture Index is available for the short- (2011-2040), medium- (2041-2070), and long-term (2071-2100) under the RCP 8.5 (continued emissions increases) and, for the long-term (2071-2100), under RCP 2.6 (rapid emissions reductions). Reference: Hogg, E.H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology 84,115–122.

  • Categories  

    Description: Seasonal mean oxygen concentration from the British Columbia continental margin model (BCCM) were averaged over the 1981 to 2010 period to create seasonal mean climatology of the Canadian Pacific Exclusive Economic Zone. Methods: Oxygen concentrations at up to forty-six linearly interpolated vertical levels from surface to 2400 m and at the sea bottom are included. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. The data available here contain raster layers of seasonal oxygen concentration climatology for the Canadian Pacific Exclusive Economic Zone at 3 km spatial resolution and 47 vertical levels. Uncertainties: Model results have been extensively evaluated against observations (e.g. altimetry, CTD and nutrient profiles, observed geostrophic currents), which showed the model can reproduce with reasonable accuracy the main oceanographic features of the region including salient features of the seasonal cycle and the vertical and cross-shore gradient of water properties. However, the model resolution is too coarse to allow for an adequate representation of inlets, nearshore areas, and the Strait of Georgia.

  • Categories  

    Description: This dataset consists of three simulations from the Northeastern Pacific Canadian Ocean Ecosystem Model (NEP36-CanOE) which is a configuration of the Nucleus for European Modelling of the Ocean (NEMO) V3.6. The historical simulation is an estimate of the 1986-2005 mean climate. The future simulations project the 2046-2065 mean climate for representative concentration pathways (RCP) 4.5 (moderate mitigation scenario) and 8.5 (no mitigation scenario). Each simulation is forced by a climatology of atmospheric forcing fields calculated over these 20 year periods and the winds are augmented with high frequency variability, which introduces a small amount of interannual variability. Model outputs are averaged over 3 successive years of simulation (the last 3, following an equilibration period); standard deviation among the 3 years is available upon request. For each simulation, the dataset includes the air-sea carbon dioxide flux, monthly 3D fields for potential temperature, salinity, potential density, total alkalinity, dissolved inorganic carbon, nitrate, oxygen, pH, total chlorophyll, aragonite saturation state, total primary production, and monthly maximum and minimum values for oxygen, pH, and potential temperature. The data includes 50 vertical levels at a 1/36 degree spatial resolution and a mask is provided that indicates regions where these data should be used cautiously or not at all. For a more detailed description please refer to Holdsworth et al. 2021. Methods: This study uses a multi-stage downscaling approach to dynamically downscale global climate projections at a 1/36° (1.5 − 2.25 km) resolution. We chose to use the second-generation Canadian Earth System model (CanESM2) because high-resolution downscaled projections of the atmosphere over the region of interest are available from the Canadian Regional Climate Model version 4 (CanRCM4). We used anomalies from CanESM2 with a resolution of about 1° at the open boundaries, and the regional atmospheric model, CanRCM4 (Scinocca et al., 2016) for the surface boundary conditions. CanRCM4 is an atmosphere only model with a 0.22° resolution and was used to downscale climate projections from CanESM2 over North America and its adjacent oceans. The model used is computationally expensive. This is due to the relatively high number of points in the domain (715 × 1,021 × 50) and the relatively complex biogeochemical model (19 tracers). Therefore, rather than carrying out interannual simulations for the historical and future periods, we implemented a new method that uses atmospheric climatologies with augmented winds to force the ocean. We show that augmenting the winds with hourly anomalies allows for a more realistic representation of the surface freshwater distribution than using the climatologies alone. Section 2.1 describes the ocean model that is used to estimate the historical climate and project the ocean state under future climate scenarios. The time periods are somewhat arbitrary; 1986–2005 was chosen because the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations end in 2005 as no community-accepted estimates of emissions were available beyond that date (Taylor et al., 2009); 2046–2065 was chosen to be far enough in the future that changes in 20 year mean fields are unambiguously due to changing GHG forcing (as opposed to model internal variability) (e.g., Christian, 2014), but near enough to be considered relevant for management purposes. While it is true that 30 years rather than 20 is the canonical value for averaging over natural variability, in practice the difference between a 20 and a 30 year mean is small (e.g., if we average successive periods of an unforced control run, the variance among 20 year means will be only slightly larger than for 30 year means). Also, there is concern that longer averaging periods are inappropriate in a non-stationary climate (Livezey et al., 2007; Arguez and Vose, 2011). We chose 20 year periods because they are adequate to give a mean annual cycle with little influence from natural variability, while minimizing aliasing of the secular trend into the means. As the midpoints of the two time periods are separated by 60 years, the contribution of natural variability to the differences between the historical and future simulations is negligible e.g., (Hawkins and Sutton, 2009; Frölicher et al., 2016). Section 2.2 describes how climatologies derived from observations were used for the initialization and open boundary conditions for the historical simulations and pseudo-climatologies were used for the future scenarios. The limited availability of observations means that the years used for these climatologies differs somewhat from the historical and future periods. Section 2.3 details the atmospheric forcing fields and the method that we developed to generate winds with realistic high-frequency variability while preserving the daily climatological means from the CanRCM4 data. Section 2.4 shows the equilibration of key modeled variables to the forcing conditions Data Sources: Model output Uncertainties: The historical climatologies were evaluated using observational climatologies generated from stations with a long time series of data over the time period including CTDs, nutrient profiles, lighthouse and satellite SST, and buoy data. The model is able to represent the historical conditions with an acceptable bias. The resolution of this model is insufficient to represent the narrow straits and channels of this region so the dataset includes a cautionary mask to exclude these regions.

  • Categories  

    Description: Seasonal mean total phytoplankton at the surface from the British Columbia continental margin model (BCCM) were averaged over the 1993 to 2020 period to create seasonal mean surface climatology of the Canadian Pacific Exclusive Economic Zone. Methods: Total phytoplankton is the sum of diatoms and flagellates concentration. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March. The data available here contain a raster layer of seasonal surface phytoplankton climatology for the Canadian Pacific Exclusive Economic Zone at 3 km spatial resolution. Uncertainties: Model results have been extensively evaluated against observations (e.g. altimetry, CTD and nutrient profiles, observed geostrophic currents), which showed the model can reproduce with reasonable accuracy the main oceanographic features of the region including salient features of the seasonal cycle and the vertical and cross-shore gradient of water properties. However, the model resolution is too coarse to allow for an adequate representation of inlets, nearshore areas, and the Strait of Georgia.

  • Categories  

    Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.