Aquatic wildlife
Type of resources
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Service types
-
This dataset was designed for Environment and Climate Change Canada's (ECCC) National Environmental Emergencies Center (NEEC) for oil spill preparedness and response. The polygons from this layer come from the coastal ecosystems geodatabase as part of the Mapping of coastal ecosystems of the Estuary and Gulf of St. Lawrence project. This layer represents semi-vegetated (25-75%) and vegetated (75-100%) zones of which marsh vegetation is the dominant. The study area includes all of the estuarine and maritime coasts of Quebec, with the exception of certain sectors, including most of the Lower North Shore and Anticosti Island, with the exception of villages of Kegaska, la Romaine, Chevery, Blanc-Sablon and Port-Menier. Some islands off the estuary and gulf coasts are part of the region covered, such as Île d'Orléans, Isle-aux-Coudres, Île Verte and Île Bonaventure. The mapping of coastal ecosystems was carried out jointly by the Laboratory for Dynamics and Integrated Coastal Zone Management (LDGIZC) of the University of Quebec at Rimouski as part of the Coastal Resilience Project (https: //ldgizc.uqar.ca/Web/projets/projet-resilience-cotiere) funded by the MELCC; and by the Fisheries and Oceans Canada team, as part of its Integrated marine response planning (IMRP) component of the Oceans Protection Plan (OPP), with the objective of updating the Marine Oil Spill Preparedness and Response Regime of Canada. The master geodatabase of coastal ecosystems is hosted and distributed by UQAR on their SIGEC-Web mapping platform: https://ldgizc.uqar.ca/Web/sigecweb The characterization of marshes was mainly carried out using photo-interpretation of RVBI aerial photos acquired by DFO (2015-2020) and oblique photos taken by helicopter acquired by UQAR in 2017. This dataset also includes the information from validation stations visited by UQAR (2018-2020), used to validate and refine the photo-interpretation.
-
This dataset was designed for Environment and Climate Change Canada's (ECCC) National Environmental Emergencies Center (NEEC) for oil spill preparedness and response. The polygons of this layer were selected from the surface geodatabase of coastal ecosystems from the UQAR-MPO project Mapping coastal ecosystems of the Estuary and Gulf of St. Lawrence. Are represented in this dataset exclusively the polygons whose plant dominance corresponds to a class of macroalgae and presenting a semi-vegetated (25-75%) or vegetated (75-100%) cover. The study area includes all of the estuarine and maritime coasts of Quebec, with the exception of certain sectors, including most of the Lower North Shore and Anticosti Island, with the exception of villages of Kegaska, la Romaine, Chevery, Blanc-Sablon and Port-Menier. Some islands off the estuary and gulf coasts are part of the region covered, such as Île d'Orléans, Isle-aux-Coudres, Île Verte and Île Bonaventure. The mapping of coastal ecosystems was carried out jointly by the Laboratory for Dynamics and Integrated Coastal Zone Management (LDGIZC) of the University of Quebec at Rimouski as part of the Coastal Resilience Project (https: //ldgizc.uqar.ca/Web/projets/projet-resilience-cotiere) funded by the MELCC; and by the Fisheries and Oceans Canada team, as part of its Integrated marine response planning (IMRP) component of the Oceans Protection Plan (OPP),with the objective of updating the Marine Oil Spill Preparedness and Response Regime of Canada. The master geodatabase of coastal ecosystems is hosted and distributed by UQAR on their SIGEC-Web mapping platform: https://ldgizc.uqar.ca/Web/sigecweb The macroalgae characterization was mainly carried out from the photo-interpretation of RGBI aerial photos acquired by the DFO (2015-2020) and oblique helicopter photos acquired by UQAR in 2017. Data from 2959 sampling stations, conducted aboard small boats during DFO field campaigns (2017-2021) were used to detail the nature of algal communities and validate the photo-interpretation. Credits © UQAR-MPO (2023, Laboratoire de dynamique et de gestion intégrée des zones côtières, Pêches et Océans Canada) Provencher-Nolet, L., Paquette, L., Pitre, L.D., Grégoire, B. and Desjardins, C. 2024. Cartographie des macrophytes estuariens et marins du Québec. Rapp. Tech. Can. Sci. halieut. Aquat. 3617 : v + 99 p. Grégoire, B., Pitre, L.D., Provencher-Nolet, L., Paquette, L. and Desjardins, C. 2024. Distribution d’organismes marins de la zone côtière peu profonde du Québec recensés par imagerie sous-marine de 2017 à 2021. Rapp. tech. can. sci. halieut. aquat. 3616 : v + 78 p. Grégoire, B. 2022. Biodiversité du relevé côtier Planification pour une intervention environnementale intégrée dans l’estuaire et le golfe du Saint-Laurent (2017–2021). Observatoire global du Saint-Laurent. [Jeu de données] Jobin, A., Marquis, G., Provencher-Nolet, L., Gabaj Castrillo. M. J., Trubiano C., Drouet, M., Eustache-Létourneau, D., Drejza, S. Fraser, C. Marie, G. et P. Bernatchez (2021) Cartographie des écosystèmes côtiers du Québec maritime — Rapport méthodologique. Chaire de recherche en géoscience côtière, Laboratoire de dynamique et de gestion intégrée des zones côtières, Université du Québec à Rimouski. Rapport remis au ministère de l’Environnement et de la Lutte contre les changements climatiques, septembre 2021, 98 p.
-
This shapefile dataset was designed using polygons extracted from the Cartography of Coastal Ecosystems of Maritime Quebec geodatabase (2022, Laboratory for Dynamics and Integrated Management of Coastal Zones, Fisheries and Oceans Canada), described in the paragraph below. It consists of polygons with eelgrass and incorporates attributes describing the vegetation cover, the composition of the seagrass beds, the associated ecosystem name, the imagery data that allowed photo-interpretation and the presence or absence of field data. A unique sequence number associated with each polygon makes it possible to trace the paired polygon of the geodatabase of coastal ecosystems to attribute values not detailed in this shapefile. The study area includes all of the estuarine and maritime coasts of Quebec, with the exception of certain sectors, including most of the Lower North Shore and Anticosti Island, with the exception of villages of Kegaska, la Romaine, Chevery, Blanc-Sablon and Port-Menier. Some islands off the estuary and gulf coasts are part of the region covered, such as Île d'Orléans, Isle-aux-Coudres, Île Verte and Île Bonaventure. The Mapping of Coastal Ecosystems of Maritime Quebec was carried out jointly by the Laboratory for Dynamics and Integrated Coastal Zone Management (LDGIZC) of the University of Quebec at Rimouski as part of the Coastal Resilience Project; and by the Fisheries and Oceans Canada team, as part of the Integrated Marine Response Planning Program (IMRP). A classification of coastal ecosystems was carried out on more than 4,200 km of coastal corridor, focusing on estuarine and maritime coasts of Quebec located between the limit of the upper foreshore and the shallow infralittoral (about 10m deep). The mapping method developed is based on semi-automated segmentation and a photo-interpretation of coastal ecosystems, using very high resolution multispectral photographs (RBVI) acquired between 2015 and 2020 by DFO. The classification of polygons is based on the assignment of predefined value classes for the biological and physical attributes under study (e.g., substrates, plant type, vegetation cover, geosystem, etc. ). Helicopter-born oblique photographs and field data helped to reduce the uncertainty associated with photo-interpretation. UQAR and DFO conducted field sampling campaigns targeting the mediolittoral (4,390 stations) and the lower mediolittoral and infralittoral zones (2,959 stations), respectively , which validated some of the attributes identified by photo-interpretation and provided detailed information on community structure . The geodatabase of the Mapping of coastal ecosystems is hosted and managed by UQAR on their SIGEC-Web cartographic platform: https://ldgizc.uqar.ca/Web/sigecweb Credits © DFO (2023, Fisheries and Oceans Canada) Provencher-Nolet, L., Paquette, L., Pitre, L.D., Grégoire, B. and Desjardins, C. 2024. Cartographie des macrophytes estuariens et marins du Québec. Rapp. Tech. Can. Sci. halieut. Aquat. 3617 : v + 99 p. Grégoire, B., Pitre, L.D., Provencher-Nolet, L., Paquette, L. and Desjardins, C. 2024. Distribution d’organismes marins de la zone côtière peu profonde du Québec recensés par imagerie sous-marine de 2017 à 2021. Rapp. tech. can. sci. halieut. aquat. 3616 : v + 78 p. Grégoire, B. 2022. Biodiversité du relevé côtier Planification pour une intervention environnementale intégrée dans l’estuaire et le golfe du Saint-Laurent (2017–2021). Observatoire global du Saint-Laurent. [Jeu de données] Jobin, A., Marquis, G., Provencher-Nolet, L., Gabaj Castrillo. M. J., Trubiano C., Drouet, M., Eustache-Létourneau, D., Drejza, S. Fraser, C. Marie, G. et P. Bernatchez (2021) Cartographie des écosystèmes côtiers du Québec maritime — Rapport méthodologique. Chaire de recherche en géoscience côtière, Laboratoire de dynamique et de gestion intégrée des zones côtières, Université du Québec à Rimouski. Rapport remis au ministère de l’Environnement et de la Lutte contre les changements climatiques, septembre 2021, 98 p.
-
The purpose of this study was to characterize the kelp bed at Batture-aux-Alouettes, a preferred food source for the green sea urchin (Strongylocentrotus droebachiensis). The green urchin is fished commercially in Quebec and the fishing effort is concentrated on the Batture-aux-Alouettes near Tadoussac, at the mouth of the Saguenay Fjord. The study was conducted in two separate phases in 2018 and 2019. The main objective of this study was to determine the abundance and biomass of the kelp bed at Batture-aux-Alouettes. The first phase, using a stratified random sampling design, was conducted from August 21th to August 24th, 2018. Sampling of two 50 x 50 cm quadrats, separated by a distance of approximately 30 m, was conducted at eleven sites during twelve dives in the eastern section of the Batture-aux-Alouettes to collect kelp for biomass estimation and macroalgal species richness assessment. In the second phase, a total of 429 stations were first sampled between July 15 and 18, 2019 with a camera system dropped in two 50 x 50 cm quadrats. The presence or absence of kelp, percent macroalgal cover, and substrate type were assessed for each photo. As a result of this underwater photographic analysis, 129 of these stations were identified as having a presence of kelp and 88 of these stations had a presence of other algal species. To ensure equal representation of the different depth strata, the stations with kelp were divided into three depth categories: shallow (-1.7 m to 0 m), medium (0 m to 2 m) and deep (2 m to 5 m). Dives were conducted from August 13 to 15, 2019, at ten of these stations using a stratified random sampling design, taking care to ensure a balanced spatial distribution as well as an equal distribution of the different depth strata (four in the shallow, three in the medium, and two in the deep). Sampling of the 50 x 50 cm dive quadrat took place at three different distances spaced 5 m apart from a transect, i.e. at the 3 m (_3m), 8 m (_8m) and 13 m (_13m) mark. If there was little or no kelp in the quadrat, the quadrat sampling could be repeated for up to four quadrats per distance for a total area of 1 m². Two additional quadrats were conducted (_x) at two stations. Biomass assessment was also done via "cookie cutter" sampling (_CC). Divers took the same 50 x 50 cm quadrat and placed it on a selected (i.e., non-random) plot with 100% kelp cover. The three files provided (DarwinCore format) are complementary and are linked by the "eventID" key. The "event_information" file includes generic information about the event, such as date and location. The "additional_information_event_and_occurrence" file includes sample size, protocol and sampling effort. The "taxon_occurrence" file includes the taxonomy of the species observed, identified to the species or lowest possible taxonomic level. To obtain the abundance and biomass assessment of the kelp bed at Batture-aux-Alouettes, contact Rénald Belley (renald.belley@dfo-mpo.gc.ca). For quality control, the organisms were identified in the field fallowing the guide: Chabot, Robert et Anne Rossignol. 2003. Algues et faune du littoral du Saint-Laurent maritime : Guide d'identification. Institut des Sciences de la mer de Rimouski, Rimouski; Pêches et Océans Canada (Institut Maurice-Lamontagne), Mont-Joli. 113 pages. The taxonomy was checked against the World Register of Marine Species (WoRMS) to match recognized standards and using the R obistools and worrms libraries. The WoRMS match was placed in the "scientificNameID" field of the occurrence file. All sample locations were spatially validated. This project was funded by DFO Coastal Environmental Baseline Program under Canada’s Oceans Protection Plan. This initiative aims to acquire environmental baseline data contributing to the characterization of important coastal areas and to support evidence-based assessments and management decisions for preserving marine ecosystems.
-
A research survey on snow crab (Chionoecetes opilio) was conducted from July 1 to July 17, 2018 on the Lower North Shore of the Gulf of St. Lawrence between Havre-Saint-Pierre and Blanc-Sablon. The main objective of this survey was to assess the abundance of snow crab and benthic species associated with snow crab habitat. Only data for benthic species associated with snow crab habitat are presented in this dataset. Data were collected according to a fixed station sampling design consisting of 61 stations, between 46 and 230 meters depth. Specimens were collected using a beam trawl with a total width of 2.8 meters and a total height of 0.76 meters. The codend was lined with a 16 millimeter stretched mesh net in order to harvest the small individuals. The hauls were made at a target speed of 2 knots and a target duration of 10 minutes depending on seabed conditions. Start and end positions were recorded to calculate the distance traveled on each tow using the geosphere library in R. The average tow distance was approximately 25 m. The area covered at each tow was the product of the trawl opening and the distance traveled. The two files provided (DarwinCore format) are complementary and are linked by the "eventID" key. The "Activity_Information" file includes generic activity information, including date and location. The "occurrence_taxon" file includes the taxonomy of the species observed, identified to the species or lowest possible taxonomic level. To obtain the abundance and biomass assessment, contact Cedric Juillet (cedric.juillet@dfo-mpo.gc.ca). For quality controls, all taxonomic names were checked against the World Register of Marine Species (WoRMS) to match recognized standards. The WoRMS match was placed in the "ScientificIDname" field of the occurrence file. Special cases were noted in the "commentsIdentification" field and selected specimens were confirmed with field photos. Data quality checks were performed using the R obistools and Worms libraries. All sampling locations were spatially validated.
-
A research survey of Iceland scallops (Chlamys islandica) using a dredge has been carried out by DFO (Fisheries and Oceans Canada) every 1 or 2 years since 1990 in the Mingan Archipelago ( fishing areas 16E and 16F). The main objective of this research survey was to assess Icelandic Scallop stocks. Another objective was to documented taxa in the captures associated with scallop habitat according to a fixed sampling plan. Occurrences by species (or taxon) are presented by station. The taxonomic and geographical validity of the data was checked and the World Register of Marine Species served as the taxonomic authority for naming all taxa recorded during the survey. Epibenthic invertebrates (mainly molluscs, echinoderms and crustaceans) as well as demersal fish were identified from the dredge catches. The study area is located around the Mingan Archipelago and the sampling of scallop beds is carried out at depths of 8 to 136 m, generally around 40 to 60 m. Sampling is done along transects at fixed stations in the study area. Sampling is done with a lined Digby scallop dredge (20 mm mesh) over approximately 150 m along the seabed. The four baskets of the dredge are examined for all scallops. Next, a basket (the first on the starboard side) is sorted and examined for associated species. Most specimens are counted by taxa. The presence or relative abundance of undersized and numerous, or colonial, organisms is noted. Special cases are sometimes retained for taxonomic analysis, for example, ascidians (to monitor invasive species) and sponges (to document new species).
-
A research survey on Stimpson's surfclam (Mactromeris polynyma) was conducted from June 15 to June 26 2017 in the Estuary of the St. Lawrence River on the Forestville deposit (Fishing Area 1A). The primary objective of this survey was to investigate the spatial distribution of pre-commercial (< 80 mm) and commercial (≥ 80 mm) sizes of Stimpson's surfclams as well as to assess the abundance and diversity of benthic species associated with the sandy habitat of the Stimpson's surfclam. Only benthic species data associated with Stimpson's surfclam habitat are presented in this dataset. Data were collected according to a systematic sampling design consisting of 77 stations, between 7 and 45 m depth. Stations were spaced 200 m apart and dispersed along a total of 18 transects perpendicular to the bathymetry. Transects were parallel and spaced 500 m apart. Specimens were collected using a hydraulic dredge of the "New England" type with a total length of 2.29 meters and a total width of 1.68 meters, of which 1.35 meters was knife width. The dredge was lined with a 19 millimeter mesh Vexar™ to harvest small individuals. The hauls were made at a speed of 0.2-0.3 knots for a duration of 2 to 3 minutes. Start and end positions were recorded to calculate the distance traveled at each tow using the geosphere library in R. The average tow distance was approximately 25 m. The area covered at each stroke was the product of the width of the dredge blade and the distance. The three files provided (DarwinCore format) are complementary and are linked by the "eventID" key. The "event_information" file includes generic event information, including date and location. The "additional_information_event_and_occurrence" file includes sample size, sampling protocol and sampling effort, among others. The "taxon_occurrence" file includes the taxonomy of the species observed, identified to the species or lowest possible taxonomic level. For abundance and biomass estimates, contact Virginie Roy (virginie.roy@dfo-mpo.gc.ca). For quality controls, all taxonomic names were checked against the World Register of Marine Species (WoRMS) to match recognized standards. The WoRMS match was placed in the "scientificNameID" field of the occurrence file. Special cases were noted in "identificationRemarks" and selected specimens were confirmed using field photos. Data quality checks were performed using the R obistools and worrms libraries. All sampling locations were spatially validated.
-
The North Shore of the Lower Estuary (Upper North Shore, Quebec) is a productive coastal system where many commercial species of benthic invertebrates are fished in the infralittoral (10-20 m) and circalittoral (20-50 m) zone. However, little data exist on the biodiversity of non-commercial species and the environmental characteristics of the benthic habitat in this area. Two scientific surveys were conducted in 2018 and 2019 to address this knowledge gap by developing a framework of biodiversity and environmental (water column and seafloor) data taking that will be used to determine the baseline state of the benthic ecosystem in this region. Surveys were conducted in 2018 (August 11-14) and 2019 (July 30-August 5) in the Upper North Shore region (between the towns of Forestville and Godbout). Surveys followed a fixed sampling design of eight transects perpendicular to bathymetry with stations at 10 m depth intervals in a bathymetry range of 10-50 m for a total of approximately 40 stations per survey. Specimens were collected with a beam trawl with an opening of 2.8 m. The hauls were made at a target speed of 2 knots and a target duration of 7 minutes. Start and end positions were recorded to calculate the distance traveled on each tow using the geosphere library of R. The average tow distance was approximately 425 m. The area covered at each tow was the product of the trawl opening and the distance traveled. The three files provided (DarwinCore format) are complementary and are linked by the "eventID" key. The "event_information" file includes generic event information, including date and location. The "additional_information_event_and_occurrence" file includes sample size, sampling protocol and sampling effort, among others. The "taxon_occurrence" file includes the taxonomy of the species observed, identified to the species or lowest possible taxonomic level. For abundance and biomass estimates, contact Virginie Roy (virginie.roy@dfo-mpo.gc.ca). For quality controls, all taxonomic names were checked against the World Register of Marine Species (WoRMS) to match recognized standards. The WoRMS match was placed in the "scientificNameID" field of the occurrence file. Special cases were noted in "identificationRemarks" and selected specimens were confirmed using field photos. Data quality checks were performed using the R obistools and worrms libraries. All sampling locations were spatially validated. This project was funded by DFO Coastal Environmental Baseline Program under Canada’s Oceans Protection Plan. This initiative aims to acquire environmental baseline data contributing to the characterization of important coastal areas and to support evidence-based assessments and management decisions for preserving marine ecosystems.
-
A research survey of scallops (mainly sea scallop Placopecten magellanicus, but also Icelandic Scallop Chlamys islandica) using a dredge was carried out by DFO (Fisheries and Oceans Canada) every 1 or 2 years since 1992 in the Magdalen Islands (fishing area 20). The main objective of this research survey was to assess Sea Scallop stocks. Another objective was to document taxa associated with scallop habitat according to a fixed random sampling plan. Occurrences by species (or taxon) are presented by station. The taxonomic and geographical validity of the data was checked and the World Register of Marine Species served as the taxonomic authority for naming all taxa recorded during the survey. Epibenthic invertebrates (mainly molluscs, echinoderms and crustaceans) as well as demersal fish were identified from the dredge catches. The current data starting in 2021 are available at the following link : https://open.canada.ca/data/en/dataset/6529a4b0-f863-4568-ac71-1fa26cf68679 The study area is located south of the Magdalen Islands and the sampling of scallop beds is carried out at depths of 10 to 38 m, generally around 25 to 35 m. A random selection of sampling stations is carried out from a fixed station grid. Sampling is done along transects at these randomly drawn stations in the study area. Sampling is done with a lined Digby scallop dredge (20 mm mesh) over approximately 500 m along the seabed. The four baskets of the dredge are examined for all scallops. Next, a basket (the first on the starboard side) is sorted and examined for associated species. Most specimens are counted by taxon. The presence or relative abundance of undersized and numerous, or colonial, organisms is noted. Special cases are sometimes retained for taxonomic analysis, for example, ascidians (to monitor invasive species) and sponges (to document new species).
-
This dataset documents the epifauna occurrences collected from 2021 to 2024 during the Canadian Beaufort Sea Marine Ecosystem Assessment (CBS-MEA) conducted by the Department of Fisheries and Oceans (DFO). This scientific program focuses on the integration of oceanography, food web linkages, physical-biological couplings, and spatial and interannual variabilities. The program also aims to expand the baseline coverage of species diversity, abundances, and habitat associations in previously unstudied areas of the Beaufort Sea and Western Canadian Archipelago. The study took place mainly in the Canadian Beaufort Sea and the Amundsen Gulf. Sampling is done along transects at fixed stations in the study area. Catches are collected with a 3 m benthic beam trawl for 10 minutes bottom-contact time at a target speed of 2 knots and with a modified Atlantic Western IIA otter trawl for 20 minutes bottom-contact time at a target speed of 2.9 knots. A total of 32 stations were sampled for epifauna in 2021, 22 in 2022, 23 in 2023 and 22 in 2024, between 22-655 m depth. Epibenthic invertebrates were identified to the lowest taxonomic level possible and photographed. All unknown specimens are frozen. In the lab, the identifications are validated or refined with the photos and the frozen specimens. The data are presented in Darwin Core and are separated in two files: The "Activité_épifaune_CBSMEA_epifauna_event_en" file which contains information about missions, stations and deployments, which are presented under a hierarchical activity structure. The "Occurrence_épifaune_CBSMEA_epifauna_en" file that contains the taxonomic occurrences.